BACHELOR OF COMPUTER APPLICATION

Second Semester Digital Logic Design (BCA - 06)

Duration: 3Hrs.

Full Marks: 70

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

I. Answer the following questions (any five)

2 x 5=10

1. Explain the following terms:

a) bit

b)byte

c)nibble

d)word length

- 2. What do you mean by self complementing code? Write two self complementing codes.
- 3. What do you mean by error-correcting codes? Define checksums.
- 4. Draw the logic symbols and construct the truth tables of the following gates:

a) AND

b) OR

c) NAND

d) NOR

- 5. State and prove De-Morgan's Theorem.
- 6. Reduce the expression A'B'+A'B+AB using mapping.
- 7. What is a Flip flop? Explain.

II. Answer the following questions (any five)

3 x 5=15

- 1. Represent the following decimal numbers in 8-bit
 - a)Sign magnitude form
 - b)1's complement form
 - c)2's complement form
 - 2. Convert the Gray code 1101 to binary.
- 3. Show that AB+ (A+B) is equivalent to A (x-nor) B.
- 4. Prove the idempotence laws
 - a)A.A=A
 - b)A+A=A
- 5. Implement a half adder using NAND Logic.
- 6. How does a J-K Flip flop differ from an S-R Flip flop in its basic operation.
- 7. What is a D-Flip flop? Explain.

- 1. Multiply the following using computer method 1111x100.
- 2. Show that A(x-or) B=AB`+A`B and construct the corresponding logic diagram.
- 3. Reduce the following expression ∏ M (2, 8, 9, 10, 11, 12, 14) and implement it in universal logic.
- 4. Construct the truth table and draw the logic diagram of a Full Adder.
- 5. Construct the truth table and draw the logic diagram of a Half subtractor
- 6. What is a Decoder. Draw the logic diagram and construct the truth table for 3-line to 8-line Decoder.
- 7. What is a Multiplexer? Draw the logic diagram and construct the truth table for a 4-input Multiplexer.

BACHELOR OF COMPUTER APPLICATION

Second Semester Digital Logic Design (BCA - 06)

(The figures in the margin indicate full marks for the questions)

Duration. 20 min	lutes			ividiks – Z	
			Fritzeliyas, all tithias,		
		PART A- Objecti	T A- Objective Type		
		The search of th			
I. Choose the corre	ect option for the follow	ing questios:		1×20=20	
1. The NAND gat					
(A) 00	(B) 01	(C) 10	(D) 11		
2. What is the bin. (A) 101110000	ary equivalent of the de (B) 110110000	ecimal number 368 (C) 111010000	(D) 111100000		
3. The decimal eq (A) 6793	uivalent of hex number (B) 6739	r 1A53 is (C) 6973	(D) 6379		
4. The number of (A) 2	control lines for a 8 – t (B) 3	o – 1 multiplexer is (C) 4	(D) 5		
5.The Gray code f (A) 1100	for decimal number 6 is (B) 1001	s equivalent to (C) 0101	(D) 0110		
6. The 2's comple (A) 0101110	ment of the number 11 (B) 0111110	01101 is (C) 0110010	(D) 0010011		
7. The gates requi	red to build a half adde e and NOR gate e and AND gate	nd OR gate gates.			
8. The code where (A) Binary code		rs differ from their prec (C) Excess	eding number by single bit is -3 . (D) Gray.		
9. In a JK Flip-Flo (A) Set Q = 1 a (B) Set Q = 0 as (C) Change the	and $Q = 0$. and $Q = 1$. output to the opposite	state.			

10. How many AND (A) 4	gates are required to (B) 5	realize $Y = CD$ (C) 3	+EF+G (D) 2			
(A) 4	(B) 3	(C) 3	(D) 2			
11. For JK flip flop	with J=1, K=0, the out	tput after clock	pulse will be			
(A) 0.	(B) 1	(C) high imp	bedance. (D) no cl	nange.		
12. The result of add	ling hexadecimal num	ber A6 to 3A is	ADM)			
(A) DD.	(B) E0.	(C) F0.	(D) EF.			
13. A universal logic gate is one, which can be used to generate any logic function. Which of the following is a universal logic gate?						
(A) OR	(B) AND	(C) XOR	(D) NAN	D		
(A) Reducing the (B) To map the g	s used for the purpose e electronic circuits us given Boolean logic for the terms in a Boolea e the terms of a given	sed. inction. in expression.	ession.		(conditioned)	
(C) Two inputs a	and one output. and three outputs.					
	l number 'A0' has the		•			
(A) 80	(B) 256	(C) 100	(D) 160			
17. When simplified	with Boolean Algebra	a(x+y)(x+z)) simplifies to			
(A) x			(D) x + y	/Z		
188 is equal to sig	ned hinary number				S : A. (
(A) 10001000	(B) 00001000	(C) 1000000	(D) 1100	00000		
19. The chief reason (A) Simplifies the (B) Is a very simp	-	s use complem	ented subtraction is	s that it		
	egative numbers easily	(0 (G)) '.				
00 7		ag St. J. but offig				
	c system, logic state 1 ge (B) higher v			level (D) low	er voltage level	