REV-00 MPH/57/62

M. Sc. PHYSICS FIRST SEMESTER

QUANTUM MECHANICS-I

(MPH-103)

Duration: 3 Hrs.

PART : A (OBJECTIVE) = 20 PART : B (DESCRIPTIVE) = 50

[PART B - Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

P.T.O.

Marks: 70

[Answer question no. One (1) & any four (4) from the rest]

- (a). What do you mean by wave particle duality? Explain with 2+3=5 examples in support of it.
 - (b). (i) Show that the wavelength of the quantum wave ³⁺²⁼⁵ associated with the electron accelerated through a potential difference of 150 volts lie in X-ray range.

(ii) Calculate the momentum gained by an electron when it is accelerated through a potential difference of 100 volts.

- 2. State Heisenberg's uncertainty principle. Describe an experiment to establish the principle. An electron has a speed of 500 m/s with an accuracy of 0.004%. Calculate the uncertainty with which you can locate the position of the electron.
- Discuss Louis de Broglie's argument for the matter wave. How
 Schrödinger established the validity of matter wave. Describe
 the Davisson- Germen experiment to indicate the correctness
 of the de Broglie hypothesis.
- **4.** (a) What do you mean by Hermitan operator? If A is a Hermitan operator & ψ is its eigen function show that $\langle A^2 \rangle = \int |A\psi|^2 d\tau$ 4+4+2=10

(b) Show that the operator $i\frac{d}{dx}$ and $\frac{d^2}{dx^2}$ are hermitian.

(c) Prove that the eigen values of hermitian operator are real.

5. Explain the meaning of identical particles. Distinguish 2+(2+2)+between classical and quantum identical particles. Define particle exchange operator and calculate the eigen values of the particle exchange operator.

6. (a) Show that (i).
$$\begin{bmatrix} \widehat{L^2} & \widehat{Lx} \end{bmatrix} = 0$$
 (2+3)+5
(ii). $\begin{bmatrix} \widehat{Lx} & \widehat{Ly} \end{bmatrix} = i\hbar \widehat{Lz}$

(b) Calculate the Eigen values and Eigen functions of \hat{L}^2 and $\hat{L}z$.

- 7. What do you mean by symmetric and Antisymmetric wave functions? Construct the symmetric wave function from unsymmetric wave functions. Explain exchange energy. Discuss how spin statistics are connected with symmetric and antisymmetric wave functions.
- 8. (a). Using ground state wave function of the harmonic 3+3=6 oscillator, calculate (i) average potential energy and (ii) average kinetic energy of the oscillator.
 - (b). Deduce the expression for radial probability density in case of H-atom. Calculate the position of maximum probability density P_{10} for the ground state of H-atom.

XX =

REV-00 MPH/57/62

M. Sc. PHYSICS FIRST SEMESTER QUANTUM MECHANICS-I (MPH-103)

Duration: 20 Mtns.

[PART : A - Objective]

Morles	A. Tick (☑) the Correct Answer from the following:			1x20=20			
Warks	1. Which of the following is ac						
	a. $\psi = e^x$	$b. \psi = x$	C. $\psi = \tan x$	$\Box d. \psi = Sinx$			
	2. Two function are orthogonal if their inner product						
	a. 1	b. -1	$\Box C. \frac{\hbar}{2}$	d. 0 (Zero)			
	3. Which of the following is not a Physical requirement for an acceptable wave function?						
	a. Single valued	b. Continuous in the given region	C. Square integrable	d. Symmetric			
	4. The commutation relation between position and momentum operator is						
	$\square \mathbf{a} \cdot [q_j, p_k] = 0$	$\square \mathbf{b}. \ [\mathbf{q}_j \ , \ \mathbf{p}_k \] = 1$	$\Box c. [q_j, p_k] = -i\hbar \delta jk$	$\square \mathbf{d}. \ [\mathbf{q}_{j},\mathbf{p}_{k}] = \mathrm{i}\mathfrak{h}\delta\mathrm{j}\mathrm{k}$			
	5. The kinetic energy operator in one dimension is						
	\therefore a. $-i\hbar \frac{\partial}{\partial x}$	b . if $\frac{\partial}{\partial x}$	$\Box ci\hbar \frac{\partial}{\partial t}$	$\Box d. = \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$			
	6. The eigen value of \hat{P}_{21} is						
	a. +1	b. 0	C. ±1	d. - 1			
	7. The $\widehat{P_y}$ operator is defined as $-i\hbar \frac{\partial}{\partial y}$. Then $\widehat{P_y^3}$ is given by						
	$\Box a{-ib^3} \frac{\partial^3}{\partial y^3}$	b. $-i\hbar \frac{\partial^3}{\partial y^3}$	$\Box c. i b^3 \frac{\partial^3}{\partial y^3}$	$\Box d. \qquad i \hbar \frac{\partial^3}{\partial y^3}$			
	8. The exchange energy between two electrons is related when they have						
	a. Same spin	b. Opposite spin	C. Same spin in degenerate orbital	d. Opposite spin in non-degenerate orbital			
				Contd			

4

2016/12

Marks: 20

Marks	9. The energy required to excite to the first excited state of a particle of mass 'm' confined in a length 'l' is							
	$\Box a. \frac{h^2}{8ml^2}$	$b. \frac{b^2}{8ml^2}$	$\Box C. \frac{3h^2}{8ml^2}$	$\Box d. \frac{3b^2}{8ml}$				
	10. Conjugate of the operator $\hat{A} = \frac{\hbar}{dx} \frac{d}{dx}$ is $\frac{\hbar}{dx} \frac{d}{dx}$. Then conjugate of the operator $\hat{O} = i\frac{\hbar}{dx} \frac{d}{dx}$ is							
	a. $i\hbar \frac{d}{dx}$	b. $i^2 \mathfrak{h} \frac{d}{dx}$	$\Box ci\hbar \frac{d}{dx}$	\Box d. $\frac{d}{dx}$				
	11. Energy of a particle in a 3-D box is $\frac{7h^3}{4ma^2}$. The degree of degeneracy is							
	a. 3	b. 6	c. 4	\Box d. 1				
	12. An orbital is a/an							
•	a. Circular path	b. One electron wave function	C. Operator	d. Observable property				
	13. The ratio of number nodes in the second excited state and the ground state of a particle in a 1-D box is							
	a. 2	\Box b. ∞	c. 1	d. 3				
	14. The number of nodes in a radial function of H like atom is							
	a. <i>n-1-2</i>	b. <i>n-l-1</i>	C. <i>n-l</i>	\Box d. $n+l-1$				
15. If r_n denotes the approximate value of r which gives us the maximum value of Radial distribution is a single for the second sec								
	$\Box \mathbf{a.} r_n = \frac{n^2}{a_0}$	b. $r_n = n^2 a_0$	$\Box c. r_n = na_0$	\Box d. $r_n = n/a_0^2$				
	16. For the ground state of the particle in one dimensional box of length 'a' the quality $\langle x \rangle$. $\langle Px \rangle$ is equal to							
	□ a. 0	\square b. 1	c. a/2	\Box d. _{2a}				
	17. Which of the following obey Fermi-Dirac Statistics?							
	a. Muon (μ ⁻)	$b. \operatorname{Pion}(\pi^*)$	C. Kaon (K^+)	\Box d. η meson				
				· · · ·				
				P.T.0				

P.T.O.

.

Marks	18. The commutator $[\widehat{Ly}, \widehat{Lx}]$ has a value equal to					
	a. - <i>i</i> ħ <i>L</i> z	b. 0	C. $-i \widehat{Lz}$	\Box d. b $\widehat{L_z}$		
	19. If ψ is wave function, the probability of finding an electron in a given orbital is proportional to					
	\Box a. ψ^2	b. $\sqrt{\psi}$	\Box C. ψ^3	$\Box d. \psi/2$		
	20. 2s orbital of Hydrogen at	om has a radial node at $2a_0$ be	ecause ψ_{2s} orbital is proportion	onal to		
	\Box a. $(2 - r/a_0)$	$b. (2 + r/a_0)$	$\Box c. \left(2 - \frac{r}{2a_0}\right)$	$\Box \mathbf{d.} \left(1 + \frac{r}{2a_0}\right)$		
			0	0		

~~<u>*</u>*~~

ò