M.Sc. PHYSICS
 First Semester MATHEMATICAL PHYSICS-I
 (MPH - 101)

Duration: 3Hrs.
Full Marks: 70
Part-A $($ Objective $)=\mathbf{2 0}$
Part-B $($ Descriptive $)=50$

(PART-B: Descriptive)

Duration: $\mathbf{2}$ hrs. 40 mins.
Marks: 50

Answer any four from Question no. 2 to 8
 Question no. 1 is compulsory.

1. (a) Solve Laplace's equation in spherical polar coordinates.
(b) Express Laplace's equation in cylindrical coordinate.
2. State and prove the theorem of diagonalization of a matrix. Find the eigen values, eigen vectors, model matrix and then diagonalize the following matrix. $(5+5=10)$ $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$
3. State the necessary conditions for the vectors $X_{1}, X_{1}, X_{1} \ldots X_{n}$ to be dependent. Are the vectors $X_{1}=(1,0,0), X_{2}=(0,1,0)$ and $X_{3}=(0,0,1)$ are linearly dependent? Find the relation between the vectors $X_{1}=(1,2,4), X_{2}=(2,-1,3), X_{3}=(0,1,2)$, $X_{4}=(-3,7,2)$. $(2+3+5=10)$
4. State the Fourier theorem for any periodic, continuous function and write the Dirichlet conditions for Fourier series expansion. Find the Fourier series of $f(x)$ where

$$
(1+4+5=10)
$$

$$
f(x)=\left\{\begin{array}{c}
0 \text { for }-\pi<x<0 \\
\frac{\pi}{4} x \text { for }-\pi<x<0
\end{array}\right.
$$

5. (a) Using Cauchy's Residue theorem find integral of $\oint \frac{4-3 z}{z(z-1)(z-2)} d z$, where c is the circle $\mathrm{IzI}=\frac{3}{2}$.
(b) Find the Taylor or Laurent series for $f(z)=\frac{1}{(z+1)(z+3)}$, when
(i) $0<\mathrm{Iz}+1$ I <2
(ii) $\mathrm{IzI}<1$
6. (a) State and prove Cauchy integral theorem.
(b) Use Cauchy's integral formula to evaluate $\oint \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$, where c is the circle $\mathrm{IzI}=3$.
7. (a) Write the components of metric tensor in spherical polar coordinate. Show that the covariant metric tensor $\mathrm{g}_{\mathrm{\mu v}}$ is a symmetric tensor of rank 2.
(b) Define Dirac- δ function in one dimension. Show that,

$$
\begin{equation*}
\int_{-\alpha}^{+\alpha} \delta^{\prime}(x) f(x) d x=-f^{\prime}(0) \tag{5+5=10}
\end{equation*}
$$

8. (a) Using tensor formalism prove that $\vec{a} .(\vec{b} \times \vec{c})=\vec{b} .(\vec{c} \times \vec{a})$.
(b) Define Christofell's symbols of second kind. Show that

$$
\Gamma_{\mu v}^{\sigma}=g^{\sigma \lambda} \Gamma_{\lambda, \mu v}
$$

(c) What is a periodic Strum-Liouville system? Explain with an example.

M.Sc. PHYSICS
 First Semester
 MATHEMATICAL PHYSICS-I
 (MPH - 101)

Duration: 20 minutes
Marks - 20

(PART A - Objective Type)

I. Choose the correct answer:

$1 \times 20=20$

1. If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & i\end{array}\right]$, the A^{-1} will be
a) $\left[\begin{array}{ll}i & 1 \\ 0 & i\end{array}\right]$
b) $\left[\begin{array}{ll}i & 0 \\ 1 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 0 \\ 0 & -i\end{array}\right]$
d) $\left[\begin{array}{cc}1 & i \\ 0 & -i\end{array}\right]$
2. The eigen values of the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ are
a) 1,0
b) 1,1
c) 1,2
d) 0,2
3. Eigen values of a triangular matrix are the \qquad elements of the matrix.
a) diagonal
b) conjugate of diagonal
c) off diagonal
d) all of these
4. Two eigen vectors, A and B are orthogonal if
a) $A^{T} B=0$,
b) $B^{T} A=0$,
c) both (a) and (b)
d) none of these
5. The necessary and sufficient condition for matrix A to be Hermitian is
a) $A=\bar{A}$,
b) $A=\bar{A}^{T}$,
c) $A=A^{T}$,
d) $A=A^{-1}$
6. Laplace transform of $\left(e^{a t}\right)$ is equal to
a) $\frac{1}{s}$
b) $\frac{1}{s-a}$
c) $\frac{a}{s^{2}+a^{2}}$
d) $\frac{s}{(s-a)^{2}}$
7. Fourier transform of integral, $F\left[\int_{0}^{t} f(t) d t\right]$ is equals to
a) $i \omega F(\omega)$
b) $\frac{1}{i \omega} F(\omega)$
c) $\frac{i}{\omega} F(i \omega)$
d) $\frac{1}{a} F\left(\frac{\omega}{a}\right)$
8. If $A_{i j}$ is an anti-symmetric tensor, then the value of the identity $\varepsilon_{i j k} A_{j k}$ will be
a) 1
b) 0
c) -1
d) 3
9. If $g_{\mu \nu} A^{\mu} B^{\nu}=0$, then the tensors A^{μ} and B^{v} are said to be
a) Alternate tensors
b) Conjugate tensor
c) Orthogonal tensor
d) Symmetric tensor
10.If $g_{\mu \nu}=0$ for $\mu \neq v$ and μ, v, σ are unequal indices then, the value of $\Gamma_{v \sigma}^{\mu}$,
a) $\frac{1}{2} \frac{g_{\mu \mu}}{\partial x^{v}}$
b) 0
c) $-\frac{1}{2 g_{v \nu}} \frac{g_{\mu \mu}}{\partial x^{v}}$
d) $\frac{1}{2} \frac{g_{\mu \mu}}{\partial x^{\mu}}$
11.The value of the identity $\delta_{i k} \varepsilon_{i k m}$ is
a) 3
b) +1
c) -1
d) 0
10. The inner product of two tensors $A_{\sigma}^{\mu \nu}$ and B_{ρ}^{λ} of rank 3 and 2 respectively, produces a tensor of rank
a) 5
b) 3
c) 2
d) 0
13.The wave equation is
a) $\nabla^{2} \phi=0$
b) $\nabla^{2} \phi=\rho$
c) $\square^{2} \phi=0$
d) $\nabla^{2} \phi=k^{2} \phi$
11. Which of the following statement is incorrect for the Green's function $G(x, t)$?
a) $G(x, t)$ is a continuous function of x.
b) The first derivative of Green's function is a discontinuous function.
c) Green's function is discontinuous at $x=t$.
d) Green's function is a characteristic of the given boundary conditions.
12. The value of integral $\int I z I d z$, where c is the straight line from $\mathrm{z}=-\mathrm{i}$ to $\mathrm{z}=\mathrm{i}$ is
a) 1
b) i
c) 0
d) 2 i
13. Let $\mathrm{f}(\mathrm{z})=\frac{1}{(\mathrm{z}-2)^{4}(\mathrm{z}+3)^{6}}$ then $\mathrm{z}=2$ and $\mathrm{z}=-3$ are the pole of order is
a) 6 and 4
b) 2 and 3
c) 3 and 4
d) 4 and 6
17.The residue of $\frac{1+e^{z}}{\sin z+z \cos z}$ at $z=0$ is
a) 1
b) -1
c) 0
d) 2
14. The integral $\oint \frac{e^{-z}}{z+1} \mathrm{dz}$, where c is the circle $\mathrm{IZI}=\frac{1}{2}$ is
a) 1
b) $\frac{1}{2}$
c) -1
d) 0
$1 \curvearrowright \mathrm{ff}(\mathrm{z})=\frac{\sin (z-a)}{(z-a)^{4}}$, then $\mathrm{f}(\mathrm{z})$ has a pole at $\mathrm{z}=\mathrm{a}$ of order
a) 3
b) 4
c) 2
d) 5
20.The Cauchy-Riemann equation for $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ to be analytic are
a) $\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}=0, \frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0$
b) $\frac{\partial U}{\partial x}=-\frac{\partial V}{\partial y}, \frac{\partial U}{\partial y}=-\frac{\partial V}{\partial x}$
c) $\frac{\partial U}{\partial x}=\frac{\partial V}{\partial y}, \frac{\partial U}{\partial y}=-\frac{\partial V}{\partial x}$
d) $\frac{\partial U}{\partial x}=-\frac{\partial V}{\partial y}, \frac{\partial U}{\partial y}=\frac{\partial V}{\partial x}$
