			REV-00 MSZ/134/165			2018/06
(PART-B: Descriptive) Time: 2 hrs. 40 min. Marks: 50				M.Sc. ZOOLOGY SECOND SEMESTER MOLECULAR BIOLOGY & BIOCHEMISTRY MSZ - 202		
		(Use	(Use Separate Answer Scripts for Objective & Descriptive)			
	[Answer question no.1 & any four (4) from the rest]		Duration : 5 hrs.	(run Marks: 70
			Time : 20 min.	(<u>PARI-</u>	A: Objective	Marks : 20
1.	What are coenzymes? Write briefly on the role of coenzymes in enzyme action.	10	Choose the corre	ect answer from the	e following:	1×20=20
2.	What is active site of an enzyme? Write down the salient features of active site.	10	 Which reaction in DNA replication is catalysed by DNA ligase? a. Addition of new nucleotides to the lagging strand b. Addition of new nucleotides to the leading strand. c. Base pairing of the template and the newly formed DNA strand. 			
3.	Describe the five stages in the biosynthesis of cholesterol from Acetyl- CoA. Name the two main bile acids found in mammals and outline its	5+1+4= 10.	d. Formation of a phosphate of th	h phosphodiester bond b he next on the lagging s	etween the 3'-OH of one Okazaki fra trand.	gment and the 5'-
4.	Explain three irreversible reactions of gluconeogenesis.	10	2. What is the name of the DNA repair system in <i>E. coli</i> in which dual incisions are made in the damaged part of the double helix, and a 12-13 base segment is removed and replaced with new DNA?			
5.	What is DNA Replication? Explain the mechanism of replication in telomeric site with proper illustrations.	2+8=10	a. Mismatch repac. Nucleotide ex3. The enzyme photol	ur keision repair Ilyase is used in what m	 b. Base excision repair d. AP site repair ethod of repair? 	
			a. Base excision		b. Photo reactivation	
6.	Why is it important in mismatch repair that the cell distinguish the	4+6=10	c. Nucleotide exc	cision	a. None of these	
	parental strands from newly synthesized strands? Contrast the		4. The main enzyme t	to polymerize leading s	trand of eukaryotic DNA is :	
	mechanism of nucleotide excision repair with illustrations.		a. DNA polymera	ase a	b. DNA polymerase β d DNA polymerase δ	
7.	What is meant by transcription of DNA? Explain the mechanism of initiation of transcription by RNA polymerase II in eukaryotic DNA.	3+7=10	5. In Nucleotide Exci lesion?	 In Nucleotide Excision repair mechanism which of the following protein first recognise DNA lesion? 		
			a. Uvr A		b. Uvr B	
8.	Contrast the various events of initiation, elongation and termination of	10	c. UVFC		a. Ovi D	
	translation mechanism in prokaryotes.		6. On which of the fo	6. On which of the following molecules would you find an anticodon?		
			a. messenger RN. c. transfer RNA	IA	b. ribosomal RNA d. small nuclear RNA	
	= = *** = =					

[4]

P.T.O.

[1]

6. What type of structures are the compounds (i) - (iv)?

- a. it catalyses the process
 - a. It catalyses the process
 - **b.** it provides the genetic blueprint for the protein
 - c. it translates the genetic code to a specific amino acid
 - d. it modifies messenger RNA molecules prior to protein synthesis
- 9. The glycolytic pathway requires which of the following as an allosteric regulatory enzyme?
 - a. Glucokinase, phosphofructokinase and pyruvate kinase
 - b. Hexokinase, phosphofructokinase and pyruvate kinase
 - c. Hexokinase, glyceraldehydes 3-phosphate dehydrogenase and enolase
 - d. Phosphofructokinase, enolase and pyruvate kinase
- 10. If ³²P- labeled inorganic phosphate were introduced to RBCs undergoing glycolysis then which of the following glycolytic intermediate would be radiolabelled?
 - a. Fructose 1,6-bisphosphatec. Glyceraldehyde 3-phosphate
- b. 1,3 –bisphosphoglycerated. Glucose 6-phosphate
- All of the enzymes in TCA cycle are located in the mitochondrial matrix except:
 a. Citrate synthetase
 b. α-ketogluterate
 - c. Succinate dehydrogenase
- **b.** α-ketogluterate **d.** Fumerase
- 12. Free glucose is formedduring glycogenolysis from:
 - **a.** Glucose residues in 1,4 linkage to the main chain
 - **b.** Glucose residues in 1,6 linkage to the main chain
 - c. Glucose 1-phosphate hydrolysis
 - d. Glucose 1,6-diphosphate hydrolysis

- 13. The breakdown of one molecule of a C16 fully saturated fatty acid by beta oxidation lead to the formation of:
 - a. 8FADH₂,8NADH and 8 acetyl CoA molecules b. 7FADH₂,7NADH and 7 acetyl CoA molecules c. 8FADH₂,8NADH and 7 acetyl CoA molecules d. 7FADH₂,7NADH and 8 acetyl CoA molecules
- 14. The prostaglandins are synthesised from:

a. arachidonic acid	b. oleic acid
c. linoleic acid	d. none of the abov

- 15. Which of the following amino acid is optically inactive?a. Glycineb. Prolinec. Glutamined. Serine
- 16. Which of the following coenzymes are mostly used for oxidative deamination of most of the amino acids?
 - a. Pyridoxal PO4b. FMNc. FADd. Folic acid
- 17. Which of the following are the cofactors for the enzyme, Hexokinase?

a. Cu ²⁺	b. K ⁺
c. Mg ²⁺	d. Zn ²⁺

- 18. Which of the following enzyme is an example for the class-Lyases?
 a. Transaminases
 b. Dehydrogenases
 c. Mutases
 d. Aldolases
- **19.** Which of the following statement about a plot of velocity versus substrate concentration for an enzyme that follows Michaelis-Menten kinetics is *false*?
 - **a.** K_m is the substrate concentration at which $V=\frac{1}{2}V_{max}$
 - b. The shape of the curve is hyperbola.
 - c. As substrate concentration increases, the initial velocity of the reaction V, also decreases.
 - **d.** At very high substrate concentration, the velocity curve becomes a horizontal line that intersects the Y axis at K_m
- 20. Which of the following statements about reversible enzyme inhibition is incorrect?
 - a. Non competitive inhibition occurs when a substrate and an inhibitor binding site is same.
 - **b.** Competitive inhibition occurs when a substrate and an inhibitor compete for the same active site on the enzyme.
 - **c.** Non competitive inhibition of an enzyme cannot be overcome by adding large amount of substrate.
 - **d.** Competitive inhibitors are often similar in chemical structures to the substrate of the inhibitor enzyme.