M.Sc. PHYSICS
 FOURTH SEMESTER
 HIGH ENERGY PHYSICS \& ASTRO PHYSICS
 MSP-402
 (Use separate answer scripts for Objective \& Descriptive)

Duration: 3 hrs .
Full Marks: 70
(PART-A: Objective)
Time: 20 min .
Marks: 20

Choose the correct answer from the following:
$1 \times 20=20$

1. The SI unit of time is sec. But in particle physics, time is measured in:
a. GeV
b. GeV^{2}
c. GeV^{-1}
d. GeV^{-2}
2. Asymptotic freedom in QCD signifies that strong force between quarks:
a. remains constant.
b. becomes weaker at smaller distance and stronger as the quarks move apart.
c. becomes extremely strong as the quarks are close to each other.
d. depends on the mass of the quarks.
3. The electron anti-neutrino $\left(\overline{v_{e}}\right)$ is assigned with a lepton number:
a. 0
b. -1
c. +1
d. +2
4. In the weak interaction involving charged current vertex:
a. quarks flavour changes
b. a quark changes to a lepton
c. quarks colour changes
d. none of the above
5. Which of the following gauge boson is exchanged in the weak decay of $u \rightarrow d$?
a. Z° boson
b. photon (γ)
c. W^{-}boson
d. W^{+}boson
6. The de Broglie wavelength associated with a 1 GeV photon is:
a. $2 \pi \mathrm{GeV}^{-1}$
b. $1 \mathrm{GeV}^{-1}$
c. 1 fermi
d. $3.95 \mathrm{GeV}^{-1}$
7. The fundamental gauge boson which mediates the strong interaction between two quarks is:
a. photon (γ)
b. pion $\left(\pi^{+}\right)$
c. muon neutrino $\left(v_{\mu}\right)$
d. gluon (g)
8. Which of the following particle has a strangeness $\neq 0$?
a. nutrino (v)
b. neutral kaon (K^{0})
c. pion $\left(\pi^{+}\right)$
d. Higgs boson (H)
9. The Dirac equation describes the relativistic motion of:
a. spin $1 / 2$ particles
b. spin 0 particles
c. spin-1 gauge boson
d. none of these
10. The flowing decay is forbidden:

$$
\pi^{-}+p \rightarrow \pi^{-}+\Sigma^{+}
$$

The conservation law violated here is:
a. conservation of parity
b. conservation of strangeness
c. conservation of charge
d. conservation of lepton number
11. The quark content of the Ω^{-}particle is:
a. uds
b. dss
c. ddd
d. sss
12. At $q^{2} \rightarrow 0$ the value of the proton form factor $F(q)$ becomes:
a. 1
b. 0
c. $q^{2 / 2}$
d. \sqrt{q}
13. The parallax (θ) of a distant star, ' $\mathrm{d}^{\prime} \mathrm{AU}$ away from the sun is given by:
a. $\quad U=\frac{1}{A U}$
b. $\theta=\frac{4 \pi}{d} A U$
c. $\theta=\frac{d}{d} A U$
d. $\theta=\frac{d}{\pi} A U$
14. The celestial equator and elliptic are inclined at about:
a. 5°
b. 13.5°
c. 23.5°
d. 43.5°
15. The solar system moves around the center of the Milky Way Galaxy with a velocity:
a. c/2
b. $600 \mathrm{~km} / \mathrm{s}$
c. $250 \mathrm{~km} / \mathrm{s}$
d. $11.2 \mathrm{~km} / \mathrm{s}$
16. Identify the process that dominates the energy liberation in Sun.
a. Nuclear fusion
b. Nuclear fission
c. Gravitational contraction
d. Gravitational differentiation
17. The super-cluster present in Pisces constellation, containing 43 galaxies, has been discovered by Indian scientists in 2017, named as:
a. Lakshmi
b. Durga
c. Swaraswati
d. Parvati
18. Acceleration due to gravity (g_{ns}) of a neutron star of mass $1.44 \mathrm{M}_{\odot}$ and radius 10 km is:
a.
b. $1.86 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$
c. $11.2 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$
d. $250 \mathrm{~m} / \mathrm{s}^{2}$
19. Escape velocity of a neutron star of mass $1.44 \mathrm{M}_{\odot}$ and radius 10 km is:
a. $1.93 \times 10^{8} \mathrm{~m} / \mathrm{s}$
b. $2.99 \times 10^{8} \mathrm{~m} / \mathrm{s}$
c. $11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}$
d. $299 \mathrm{~m} / \mathrm{s}$
20. The lightest elements are built up in:
a. the early universe
b. the main sequence stars
d. the neutron stars

(PART-B:Descriptive)

[Answer question no. 1 \& any four (4) from the rest]

1. a. What do you mean by elementary or fundamental particle? List all the
fundamental entities of the standard model of particle physics.
b. Construct the baryon octet putting the symbols of the baryons in appropriate places in the octet according to their charge and strangeness.
2. a. Explain briefly the $C P$ violation in the neutral kaon system.
b. Calculate the color factor for the interaction between a red and a blue (R-B) quark.
3. a. Discuss elaborately the deep inelastic scattering process of neutrino and quark.
b. Express Dirac equation for spin $1 / 2$ particles in covariant form. What are the eigen values of the Dirac traceless matrices α_{i} and β ?
4. a. Show that the scattering cross section for an extended object (say a hadron) can be expressed as:
$d \sigma(\theta)=d \sigma_{p t}\left|F\left(Q^{2}\right)\right|^{2}$
where $F\left(Q^{2}\right)$ is the hadron form factor
b. Write a short note on quark confinement.
5. a. Find the neutrinos involved in the following decays:
(i) $\pi^{-} \rightarrow \mu^{-}+$?
(ii) $\mu^{-} \rightarrow e^{-}+$? + ?
b. Draw the Feynmann diagram for charged current vertex of leptons for weak interaction. Give an example.
c. Analyze the following reactions in terms of constituent quarks:
(i) $\pi^{-}+p \rightarrow K^{0}+\Lambda^{0}$
(ii) $K^{-}+p \rightarrow K^{+}+K^{0}+\Omega^{-}$
d. A photon with energy $E_{\gamma}=2.09 \mathrm{GeV}$ creates a proton-antiproton pair in which the proton has a kinetic energy of 95 MeV . Calculate the kinetic energy of the antiproton.
6. Explain the Apparent and Absolute magnitudes of a star.

Draw the H-R diagram and discuss its three main regions.
7. Calculate the amount of energy released when H fuses to produce $H e$ in $2+4+4=10$ stars.
Discuss the steps of the fusion reactions below:
(a) Proton-Proton chain reaction.
(b) Carbon-Nitrogen-Oxygen reaction.
8. Explain briefly how white dwarf forms.

What role does electron degeneracy plays in the interior of a white dwarf?

$$
==* * *=
$$

