M.Sc. PHYSICS
 FOURTH SEMESTER STATISTICAL PHYSICS
 MSP-401
 (Use separate answer scripts for Objective \& Descriptive)

Duration : 3 hrs.
Full Marks: 70

(PART-A: Objective)

Time : 20 min .
Choose the correct answer from the following:

1. The probability of occurrence of a given macrostate is proportional to the number of:
a. macrostates
b. phase points
c. microstates
d. phase cells
2. The state of a system is represented by:
a. n independent position coordinates
b. $2 n$ combined coordinates
c. n independent momentum coordinates
d. n combined coordinates
3. The Γ-space may be considered as a superposition of:
a. μ-space
b. п-space
c. phase-space
d. none of these
4. The priori a probability G or the distribution is based upon the properties of the:
a. phase-point
b. representative point
c. cell
d. none of these
5. If the cells are of equal size then they have the same:
a. thermodynamic probability
b. a priori probability
c. density
d. none of these
6. The probability of a composite event is the product of the probabilities of the:
a. individual events
b. independent events
c. Both individual and independent events
d. none of these
7. The probability of finding a phase point in any particular region of phase space is directly proportional to the:
a. accessible states
b. density
c. thermodynamic probability
d. volume
8. If the zero point energy were not present, then such an oscillator is called:
a. Plank's oscillator
b. Harmonic oscillator
c. Single oscillator
d. none of these
9. In the presence of external magnetic field the dipoles experiences a
a. torque
b. momentum
c. electric field
d. none of these
10. When the ensemble has energy ranging till infinity then the ensemble is called a:
a. Micro-canonical ensemble
b. Canonical ensemble
c. Grand-canonical ensemble
d. None of these
11. The norm of state vector in Hilbert space is:

| a. 1 | b. 0 |
| :--- | :--- | :--- |
| c. depends on dimension | d. infinity |

b. 1
d. none of the above

$$
\begin{aligned}
& \text { c. half integral } \\
& \text { c. }
\end{aligned}
$$

13. The chemical potential of photons is: a. finite but non zero
c. infinity
b. zero
d. not defined
14. Symmetric wave functions are shown by: a. fermions
b. classical particles d. electrons
15. Conditions under which classical statistics can be applied are:
a. low density and low temperature
b. high density and high temperature
c. any density and any temperature
d. low density and high temperature
16. In thermal equilibrium, the probability distribution function is:
a. dependent on time
b. independent of time
d. none of the above
a. 3
b. 1
c. 2
d. 1.5
17. If the first derivative of free energy is discontinuous then the transition is known as: a. $2^{\text {nd }}$ order transition
b. $1^{\text {st }}$ order transition
c. $0^{\text {th }}$ order transition
d. None of the above
18. The slope of $\mathrm{m}-\mathrm{H}$ graph at critical point is:

a. 0	b. infinity
c. 1	d. -1

20. In thermal equilibrium, the probability density is a function of:
a. hamiltonian
b. momentum
c. position
d. time

(PART-B: Descriptive)

[Answer question no. 1 \& any four (4) from the rest]

1. a. Show that the probability that a phase point for a system chosen at random from an ensemble at time t would be given by
$d \omega=\rho_{N}(q, p, t) \prod_{i=1}^{f} d q_{i} d p_{i}$
b. Prove both the principles of Liouville's theorem.
2. a. Find the density matrix for one particle in a box.
b. Find the partition function for one particle in a box.
3. a. Show that the $2^{\text {nd }}$ virial coefficient reduces the pressure of a non degenerate fermionic gas.
b. Starting from average occupation number find the expression of density of a degenerate fermionic gas.
4. a. Derive Planck distribution of black body radiation from Bose-Einstein statistics.
b. Derive Rayleigh-jeans distribution from Planck distribution.
5. Discuss in details about Ising model.
6. a. Show that for grand canonical ensemble, the Gibb's free energy is
$G=\mu \bar{n}$
b. Obtain the Helmholtz free energy for a system of harmonic oscillator.
7. a. Explain Gibb's paradox. How is it resolved?
b. Show that for a perfect gas represented by a grand canonical ensemble, the probability of finding the sub-system with n atoms is given by Poisson's distribution.
$w(n)=\frac{1}{n_{1}}(\bar{n})^{n} \exp -(\bar{n})^{n}$
8. a. What is Partition function?
b. Obtain the expression for Helmholtz free energy in terms of partition function for a canonical ensemble.
c. Show that entropy of a system in canonical ensemble can be expressed
$\sigma=-\sum_{i} p_{i} \log \rho_{i}$
where ρ_{i} is the probability of the system to be found in the $i^{\text {th }}$ state.
