REV-00 MSP/52/57

M.Sc. PHYSICS FOURTH SEMESTER STATISTICAL PHYSICS **MSP-401**

(Use separate answer scripts for Objective & Descriptive)

Duration : 3 hrs. Full Marks: 70 [PART-A : Objective] Time: 20 min. Marks: 20 Choose the correct answer from the following: 1x20=201. The probability of occurrence of a given macrostate is proportional to the number of: a. macrostates b. phase points c. microstates d. phase cells 2. The state of a system is represented by: a. n independent position coordinates b. 2n combined coordinates c. *n* independent momentum coordinates d. n combined coordinates 3. The Γ -space may be considered as a superposition of: a. µ-space b. п-space c. phase-space d. none of these 4. The priori a probability G or the distribution is based upon the properties of the: a. phase-point b. representative point c. cell d. none of these 5. If the cells are of equal size then they have the same: a. thermodynamic probability b. a priori probability d. none of these c. density 6. The probability of a composite event is the product of the probabilities of the: a. individual events b. independent events c. Both individual and independent events d. none of these 7. The probability of finding a phase point in any particular region of phase space is directly proportional to the: a. accessible states b. density c. thermodynamic probability d. volume 8. If the zero point energy were not present, then such an oscillator is called: a. Plank's oscillator b. Harmonic oscillator d. none of these c. Single oscillator 9. In the presence of external magnetic field the dipoles experiences a a. torque b. momentum c. electric field d. none of these **10.** When the ensemble has energy ranging till infinity then the ensemble is called a: a. Micro-canonical ensemble b. Canonical ensemble

c. Grand-canonical ensemble d. None of these

11. The norm of state vecta. 1c. depends on dimention	and the second second	b. 0 d. infinity
12. The spin of fermions isa. 0c. half integral	S:	b. 1 d. none of the above
13. The chemical potentiaa. finite but non zeroc. infinity	· · · · · · · · · · · · · · · · · · ·	b. zero d. not defined
14. Symmetric wave functa. fermionsc. bosons	tions are shown by:	b. classical particles d. electrons
15. Conditions under whia. low density and loc. any density and ar	w temperature	an be applied are: b. high density and high temperature d. low density and high temperature
16. In thermal equilibriuma. dependent on timec. dependent on temp	2	ibution function is: b. independent of time d. none of the above
17. The critical exponent of a. 3 b. 1	of volume is: c. 2	d. 1.5
 If the first derivative o a. 2nd order transition c. 0th order transition 	ı	tinuous then the transition is known as: b. 1st order transition d. None of the above
19. The slope of m-H grap a. 0 c. 1	oh at critical point is:	b. infinity d1
20. In thermal equilibrium a. hamiltonian c. position	n, the probability dens	ity is a function of: b. momentum d. time

	(<u>PART-B : Descriptive</u>)		
Time : 2 hrs. 40 min.			
	[Answer question no.1 & any four (4) from the rest]		
1.	a. Show that the probability that a phase point for a system chosen at random from an ensemble at time t would be given by f	5+5=10	
	$d\omega = \rho_N(q, p, t) \prod_{i=1}^{n} dq_i dp_i$		
	b. Prove both the principles of Liouville's theorem.		
2.	a. Find the density matrix for one particle in a box.b. Find the partition function for one particle in a box.	5+5=10	
3.	a. Show that the 2 nd virial coefficient reduces the pressure of a non	5+5=10	
	degenerate fermionic gas.b. Starting from average occupation number find the expression of density of a degenerate fermionic gas.		
4.	a. Derive Planck distribution of black body radiation from Bose-Einstein	6+4=10	
	statistics. b. Derive Rayleigh-jeans distribution from Planck distribution.		
5.	Discuss in details about Ising model.	10	
6.	a. Show that for grand canonical ensemble, the Gibb's free energy is $G = \mu \bar{n}$	4+6=10	
	b. Obtain the Helmholtz free energy for a system of harmonic oscillator.		
7.	b. Show that for a perfect gas represented by a grand canonical ensemble, the probability of finding the sub-system with <i>n</i> atoms is given by Poisson's distribution.	5+5=1(
	$w(n) = \frac{1}{n_i} (\bar{n})^n exp (\bar{n})^n$		
8.	a. What is Partition function?b. Obtain the expression for Helmholtz free energy in terms of partition	2+5+3=10	
	function for a canonical ensemble.		
	c. Show that entropy of a system in canonical ensemble can be expressed as $\sigma = -\sum_{i} \rho_i \log \rho_i$		
	where ρ_i is the probability of the system to be found in the i th state.		

-- --- --

3

= = *** = =