c) Classify the following integral equation as Fredholm or Volterra integral equation, Linear or Non-linear and Homogenous or Nonhomogeneous. Justify your answer.
(i) $u(x)=\int_{0}^{x}(x-t) u(t) d t$
(ii) $u(x)=\frac{2}{7} x+\int_{0}^{1} x t u^{2}(t) d t$

M.Sc. PHYSICS
 THIRD SEMESTER MATHEMATICAL PHYSICS-II
 MSP-301
 (Use separate answer scripts for Objective \& Descriptive)

1. The orthogonality condition of Hermite polynomial for $(\mathrm{m} \div n)$ is given by:
a. $\int_{-\infty}^{+\cdots} H_{m}(x) H_{n}(x) e^{-x^{2}} d x=0$
b. $\int_{-\infty}^{+\infty} \varphi_{m}(x) \varphi_{n}(x) a^{a} x=0$
c. $\int_{-\infty}^{-\infty} \varphi_{m}(x) \varphi_{n}(x) e^{x^{2}} d x=0$
d.
$\int_{-=0}^{*} H_{n}(x) H_{n}(x) e^{x^{2}} d x=0$
2. If a group possesses an element such that $I, a, a^{2}, a^{3}, \ldots .$. includes. \qquad of à group, it is called a cyclic group.
a. All elements
b. Two elements
c. Few elements
d. None of these
3. The number of symmetry operations of an equilateral triangle that forms a finite group is:
a. Ten b. Six
c. Four
d. None of these
4. The orthogonal properties of Laguerre polynomial L_{n} is given by
a. $\int_{0}^{=} e^{x L_{n}(x) L_{m}(x) d x=0}$
b. $\int_{0}^{2 \pi} L_{n}(x) L_{m n}(x) d x=0$
c. $\int_{0}^{\infty} e^{-x} L_{n}(x) L_{m}(x) d x=0$
d. None of these
5. Choose the incorrect option from the following:
a. A cyclic group is also abelian.
b. An abelian group is also cyclic.
c. If ' a ' group possesses an element a, a^{2}, a^{3}, \ldots. , then the group is cyclic.
d. All of the above
6. If a subset ${ }^{G}$ and ${ }^{G}$ is closed under. \qquad it is also a group and called a sub-group
a. Rotation
b. Addition
c. Multiplication
d. None of these
7. The recurrence formula for Bessel function of the form $x^{-n} J_{r s}(x)$ is equal to:
a. $x^{n} j_{n}$
b. $-x^{-n} J_{n+1}$
c. $\left.x^{n}\right]_{n+2}$
d. $\left.x^{n}\right]_{n-1}$
8. The equation $g(x)=f(x)+\int_{a}^{b} d t K(x, t) f(t)$ is a:
a. Volterra equation of first kind
b. Volterra equation of second kind
c. Fredholm equation of first kind
d. Fredholm equation of second kind
9. If the Kernel $K^{\prime}(\boldsymbol{x}, t)=\boldsymbol{K}(\boldsymbol{t}, \boldsymbol{x})$, it is:

PART-B:Descriptive

a. Asymmetric
b. Continuous
c. Discontinuous
d. Symmetric
10. The matrix of linear transformation $T: R \rightarrow R^{2}$ defined by $T(x)=(6 x, 8 x)$ with respect to a standard basis is:
a. [6 8 1$]$
b. $\left[\begin{array}{ll}8 & 6\end{array}\right]$
c. $\left[\begin{array}{l}6 \\ 8\end{array}\right]$
d. $\left[\begin{array}{l}8 \\ 6\end{array}\right]$
11. The eight $\mathrm{SU}(3)$ generators can be represented in terms of zero-trace Hermitian matrices with ${ }_{5}=\frac{1}{2} \lambda_{i}$. The $\lambda_{\text {: }}$ are known as
a. Diagonal matrices
b. Unitary matrices
c. Gell-Mann matrices
d. All of the above
12. The zero operator is $\mathrm{a}:$
a. Identity operator
b. Zero transformation
c. Linear operator
d. None of these
13. The standard basis of R^{3} is $\left(e_{1}, e_{2}, e_{3}\right)$. Here e_{1} is:
a. $(0,1,0)$
b. $(1,0,0)$
c. $(0,0,1)$
14. Lie's essential idea was to establish a group in terms of its:
a. Representation
b. Generators
c. Parameters
d. None of the above
15. The operator $d x_{1}\left|x_{1}\right|\left\langle x_{1}\right|$ is called:
a. An ordinary propagator
b. A propagator
c. An identity operator
d. All of the above
16. The order of a vector field R^{4} is:
a. 4
b. 2
c. 3
d. None of these
17. The number of generators of a Lie group is equal to the:
a. Basis of the group
b. Parameter of the group
c. Order of the group
d. None of the above
18. Irreducible representations of abelian group are:
a. 2×2
b. $n \times n$
c. 1×1
d. None of the above
19. The value of Hermite polynomial $\mathrm{H}_{0}(\mathrm{x})$ is
a. 0 .
c. $\left(4 x^{2}-2\right)$
d. None of these
20. The solution of $P_{n}(x)$ and $\varepsilon_{n}(x)$ is a series of one of the following kind: a. both $B_{n}(x)$ and $Q_{x}(x)$ are terminating.
b. $P_{n}(x)$ is non-terminating and $Q_{n}(x)$ terminating.
c. both $P_{n}^{(x)}$ and $Q_{n}(x)$ are non-terminating.
d. $P_{n}(x)$ is terminating and $Q_{n}(x)$ non-terminating.

[Answer question no. 1 \& any four (4) from the rest]

1. a) Prove the orthogonality of Bessel function.
b) Prove that $\int x J_{0}^{2}(x) d x=\frac{1}{2} x^{2}\left[J_{0}{ }^{2}(x)+J_{1}{ }^{2}(x)\right]^{+C}$
2. a) Express the following function in Fourier-Legendre expansion.
$f(x)=\left[\begin{array}{c}0 \\ x^{2}\end{array}\right] \quad \begin{gathered}-1 \leq x \leq 0 \\ 0 \leq x \leq 1\end{gathered}$
b) Prove that: $(n+1) P_{n+1}=(2 n-1) x P_{n}-n P_{n-1}$
3. a) Show that the mapping
$f: V_{3}(R)=V_{2}(R)$ defined by $f(a, b, c)$

$$
=(r, n+b) \text { is a linant transformation }
$$

b) Show that the mapping
$f: V_{3}(R)=V_{2}(R)$ defined by $f(a, b, c)$

$$
=(a-b, a+c) \text { is a linear transformation }
$$

4. a) What is a unitary group? Show the Unitary representation of a group D_{3} and hence show the reducible representation of an equilateral triangle.
b) Write a brief note on Homomorphism and Isomorphism of a group.
c) Verify whether there is Homomorphism or Isomorphism between groups of a Non-zero complex numbers (under multiplication) and complex numbers with absolute value 1(under multiplication).
5. a) Discuss about Lie group and their generators.
b) Show that there is homomorphism between $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ generators.
6. State the theorems of Schur's Lemmas. Prove the Schur's second lemma
7. a) Prove that:
(i) $\left.j^{\prime \prime}(x)=\left(n^{2}-n-x^{2}\right)_{n}(x)+x\right)_{2 n+1}(x)$
(ii) Prove that $P_{n}(1)=\mathbf{1}$
b) Obtain the integral form of Linear harmonic oscillator equation by transformation of its differential form into homogenous Fredholm Integral equation of second kind.
8. a) If $u(x)=e^{-x^{2}}$ is a solution of the Volterra integral equation $u(x)=1-\alpha \int_{0}^{x} t u(t) d t$, Find $a ?$
b) Check if $u(x)=x+\varepsilon^{x}$ is a solution of the Fredholm integral equation $u^{\prime \prime}(x)=e^{x}-\frac{4}{3} x+\int_{0}^{1} x t u(t) d t ; \quad u(0)=1, \quad u^{\prime}(0)=2$
