c) Classify the following integral equation as Fredholm or Volterra integral equation, Linear or Non-linear and Homogenous or Nonhomogeneous. Justify your answer.

(i) $u(x) = \int_0^x (x-t)u(t) dt$ (ii) $u(x) = \frac{2}{7}x + \int_0^1 xt \ u^2(t) dt$

==***==

M.Sc. PHYSICS THIRD SEMESTER MATHEMATICAL PHYSICS-II

MSP-301

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs.

Time: 20 min.

(PART-A: Objective)

Choose the correct answer from the following:

Marks: 20

 $1 \times 20 = 20$

Full Marks: 70

1. The orthogonality condition of Hermite polynomial for $(m \neq n)$ is given by:

a.
$$\int_{-\infty}^{+\infty} H_m(x) H_n(x) e^{-x^2} dx = 0$$

b.
$$\int_{-\infty}^{+\infty} \varphi_m(x) \varphi_n(x) dx = 0$$

c.
$$\int_{-\infty}^{+\infty} \varphi_m(x) \varphi_n(x) e^{-x^2} dx = 0$$

d.
$$\int_{-\infty}^{+\infty} H_m(x) H_n(x) e^{x^2} dx = 0$$

If a group possesses an element such that ^I, α, α², α³, …. includes...... of a group, it is called a cyclic group.

a. All elements	b. Two elements
c. Few elements	d. None of these

3. The number of symmetry operations of an equilateral triangle that forms a finite group is:
a. Ten
b. Six
c. Four
d. None of these

4. The orthogonal properties of Laguerre polynomial L_n is given by **a.** $\int_0^\infty e^x L_n(x) L_m(x) dx = 0$ **b.** $\int_0^\infty L_n(x) L_m(x) dx = 0$

d. None of these

- 5. Choose the incorrect option from the following:
- a. A cyclic group is also abelian.
- **b.** An abelian group is also cyclic.
- **c.** If '*a*' group possesses an element a, a^2 , a^3 ,..., then the group is cyclic.

d. All of the above

 $\mathbf{C} \cdot \int_{-\pi}^{\infty} e^{-x} L_n(x) L_m(x) dx = 0$

6. If a subset ^c and ^c is closed under..... it is also a group and called a sub-group.
a. Rotation
b. Addition
c. Multiplication
d. None of these

7. The recurrence formula for Bessel function of the form $x^{-n}J_{n}(x)$ is equal to:

a. $x^n J_n$	b. $-x^{-n}J_{n+1}$
c. $x^n J_{n+2}$	$\mathbf{d}_{n+1} \mathbf{x}^n J_{n-1}$

8. The equation $g(x) = f(x) + \int_a^b dt \ K(x, t) f(t)$ is a: a. Volterra equation of first kind b. Volterra equation of second kind

c. Fredholm equation of first kind **d.** Fredholm equation of second kind

4

	a. Asymmetricc. Discontinuous	b. Continuous d. Symmetric	Tin	ne: 2 hrs. 40min.
	The matrix of linear transformation standard basis is:	T: R \rightarrow R ² defined by T(x)= (6x, 8x) with respect to a		A]
	a. $\begin{bmatrix} 6 & 8 \end{bmatrix}$ c. $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$	b. $\begin{bmatrix} 3 & 6 \end{bmatrix}$ d. $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$	1.	a) Prove the orthoring b) Prove that $\int x_{1}$
	1. The eight SU (3) generators can be represented in terms of zero-trace Hermitian matrices $s = \frac{1}{2}$		2.	a) Express the fol
	with $s_i = \frac{1}{2} \lambda_i$. The λ_i are known as: a. Diagonal matrices c. Gell-Mann matrices	b. Unitary matrices d. All of the above		$f(x) = \begin{bmatrix} 0 \\ \chi^2 \end{bmatrix}$ b) Prove that: (<i>n</i>
12.	The zero operator is a: a. Identity operator c. Linear operator	b. Zero transformationd. None of these	3.	a) Show that the $f: V_3(R) = V_2(R)$
13.	The standard basis of R ³ is (e ₁ ,e ₂ ,e ₃) a. (0,1,0) b. (1,0,0)). Here e ₁ is: c. (0,0,1) d. (1,0,1)		b) Show that the $f: V_3(R) = V_2(R)$
14.	Lie's essential idea was to establish a. Representation c. Parameters	a group in terms of its: b. Generators d. None of the above	4.	= (a) What is a unita D3 and hence s
15.	The operator $dx_1 x_1\rangle (z_1)$ is called: a. An ordinary propagator c. An identity operator	b. A propagator d. All of the above		triangle. b) Write a brief n c) Verify whether
16.	The order of a vector field R4 is:a. 4b. 2c. 3	d. None of these		groups of a No complex numb
17.	The number of generators of a Lie g a.Basis of the group c.Order of the group	group is equal to the: b.Parameter of the group d.None of the above	5.	a) Discuss aboutb) Show that then generators.
18.	Irreducible representations of abelia a. 2 x 2	an group are: b. <i>n x n</i>	6.	State the theorem
19.	c. 1 x 1 The value of Hermite polynomial F		7.	a) Prove that: (i) $j_{1}''(x) = (n + 1)$
20.	a. 0 b. 1 c. $(4x^2 - 2)^{n}$ The solution of $P_n(x)$ and $Q_n(x)$ is a ser a. both $P_n(x)$ and $Q_n(x)$ are terminating b. $P_n(x)$ is non-terminating and $Q_n(x)$	ries of one of the following kind: g. terminating.		 (ii) Prove that ^P b) Obtain the inte transformation Integral equation
	c. both $P_n(x)$ and $Q_n(x)$ are non-termin d. $F_n(x)$ is terminating and $Q_n(x)$ non-t		8.	 a) If u(x) = e^{-x} u(x) = 1 - a b) Check if u(x) equation u" (x)

[Answer question no.1 & any four (4) from the rest]	
a) Prove the orthogonality of Bessel function.	5+5=10
b) Prove that $\int x J_0^2(x) dx = \frac{1}{2} x^2 \left[J_0^2(x) + J_1^2(x) \right]^+ C$	
a) Express the following function in Fourier-Legendre expansion.	5+5=10
$f(x) = \begin{bmatrix} 0\\ x^2 \end{bmatrix} \qquad \begin{array}{c} -1 \le x \le 0\\ 0 \le x \le 1 \end{array}$	
b) Prove that: $(n + 1)P_{n+1} = (2n + 1)xP_n - nP_{n-1}$	
a) Show that the mapping	4+6=10
$f: V_3(R) = V_2(R) \ defined \ by \ f(a,b,c)$	
= (c, a + b) is a linear transformation	
b) Show that the mapping	
$f: V_3(R) = V_2(R) \text{ defined by } f(a, b, c)$ = $(a - b, a + c)$ is a linear transformation	
a) What is a unitary group? Show the Unitary representation of a group.	4+3+3=10
D ₃ and hence show the reducible representation of an equilateral triangle.	
b) Write a brief note on Homomorphism and Isomorphism of a group.	
c) Verify whether there is Homomorphism or Isomorphism between	
groups of a Non-zero complex numbers (under multiplication) and	
complex numbers with absolute value 1(under multiplication).	
a) Discuss about Lie group and their generators.	5+5=10
b) Show that there is homomorphism between SU(2) and SO(3)	
generators.	
State the theorems of Schur's Lemmas. Prove the Schur's second lemma.	4+6=10
a) Prove that:	2+2+6=10
(i) $j_1''(x) = (n^2 - n - x^2) f_n(x) + x f_{n+1}(x)$	
(ii) Prove that $P_n(1) = 1$	
b) Obtain the integral form of Linear harmonic oscillator equation by	
transformation of its differential form into homogenous Fredholm	
Integral equation of second kind.	
a) If $u(x) = e^{-x^2}$ is a solution of the Volterra integral equation	3+3+4=10
$u(x) = 1 - \alpha \int_0^x t u(t) dt$, Find a?	
b) Check if $u(x) = x + e^x$ is a solution of the Fredholm integral	
equation $u''(x) = e^x - \frac{4}{3}x + \int_0^1 xt \ u(t) dt; \ u(0) = 1, \ u'(0) = 2$	
$u(u) = 0 = \frac{1}{3}u + 10uu u(u)uu, u(0) = 1, u(0) = 2$	

(<u>PART-B :Descriptive</u>)

Marks: 50