M.Sc. PHYSICS SECOND SEMESTER CONDENSED MATTER PHYSICS

REV-00

MSP/57/67

Duration : 3 hrs.

Time: 20 min.

c. Remain same

MSP-203

(Use Separate Answer Scripts for Objective & Descriptive)

(PART-A: Objective)

ve)				
	Full	Marks	:	70

2018/06

Marks:20

7.	What is a crystal lattice, unit cell, primitive unit, lattice constant and	2×5=10
	lattice translational vector? Define with the below figure of the lattice	
	points.	

8. Describe Kronig Penney (KP) Model with figure. What is its physical 2+3+5 significance? Describe with figure, the presence of allowed and =10 forbidden bands in solids, accordance to the KP model.

- *** -

Choose the correct answer from the following:			1×20=20
1.	A primitive unit cell is a. Highest volume unit cell c. A lattice point	b. A crystal lattice d. None of the above	
2.	Sugar and common salt are exam a. Crystalline and amorphous s b. Amorphous and crystalline s c. Crystalline solids d. Amorphous	nples of colids respectively colids respectively	
3.	A Brillouin zone in a solid state a. Allowed electronic energy ba b. Forbidden electronic energy c. Forbidden electronic energy d. Allowed electronic energy ba	material is and in k-space band in k-space band in real-space and in real-space	
4.	Example of a material with cova a. Sodium chloride b. W	lent bonding is Vater c. Silicon wafer	d. Gold
5.	According to Drude model, in a a. Electrons are intact and ions b. Electrons are free to move ar c. Both electrons and ions are in d. Both electrons and ions are f	metal are free to move in the block id ions are intact in the block ntact in the block ree in the block	
6.	The Bloch theorem provides the a. The periodic motion of the e b. The periodic motion of a soli c. The free random motion of a d. The free random motion of a	notion of lectrons in a crystal ton in a crystal n electron in a crystal n soliton in a crystal	
7.	If electric field applied along X-a Hall Voltage will be generated in a. X-direction c. Z-direct	ixis and magnetic field is applied alon ι b. Y-direction d. At an angle θ<90° bet	ng Y-axis, then the ween X and Y.
8.	With increase in temperature the a. Decreases	e electrical conductivity of intrinsic se b. Increases	mi-conductor

[1]

P.T.O.

d. First increase and then decreases

(<u>PART-B: Descriptive</u>)							
Time : 2 hrs. 40 min. Marks :			arks: 50				
	[Ans	swer question no.1 & any four (4) from the rest]					
1.	Answer the follow a. Obtain a by sca b. If a visi from sound maxin	wing : an expression for the frequency of phonons generated attering of photons at an angle θ . ble light of wavelength 5000 Å undergoes scattering a crystal of refractive index 1.5, and if the velocity of 1 in the crystal is 5000 ms ⁻¹ , then calculate the num frequency of the phonon generated.	5+5=10				
2.	A. What is B. Write no a. b. c. d.	the origine of magnetic behaviour in solid. otes on : Ferroelectricity Piezoelectricity Diamanatism Paramagnetism	2+8=10				
3.	Describe Drude r the expression for	nodel and its significance. From Drude model deduce r electrical conductivity.	5+5=10				
4.	Answer the follow a. Show th symbo b. Conside	wing : at the molecular polarizability, $\alpha = \frac{3\varepsilon_0}{n} \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right)$, where bls have their usual meanings. r a CCl ₄ molecule, which relative	6+4=10				
	permi weigh the m	ttivity $\varepsilon_r = 2.24$, density $\rho = 1.60$ gm/cm ³ , molecular it M _w =156. If an electric field of 10 ⁷ V/m is applied to olecule, then calculate its dipole moment.					

- 5. What is Hall-effect? Explain with figure with proper direction of axes. 2+2+4+2 =10 From Lorentz force deduce the expression for hall coefficient. In the field of semiconductor industry how Hall effect can be a useful physical phenomena.
- 6. What are Millar indices? Identify in figure, the miller indices (110) and 2+4+4 (111) in a cubic crystal. Deduce the relation of inter planner spacing. =10

[3]

P.T.O.