7. a. Show that any inner product of the tensors A^{p} and B_{q} is a scalar.
b. Prove that $A_{\mu v} B^{\mu} C^{v}$ is an invariant if B^{μ} and C^{v} are contravariant tensors of rank 1 and $A_{\mu \nu}$ is a covariant tensor of rank 2.
c. Show that if a tensor is symmetric with respect to two indices in any coordinate system, it remains symmetric ${ }^{\text {¹ }}$ with respect to these two indices in any other coordinate system.
8. a. Show that:
$[\mu v, \sigma]+[\sigma v, \mu]=\frac{\partial \partial_{\sigma \mu}}{\partial x^{v}}$.
b. Using tensor formalism prove the following vector identity: $\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})$
c. Write down the components of metric tensor in spherical polar coordinate.

Show that, $d g_{\alpha \beta}=-g_{\mu \alpha} g_{\nu \beta} d g^{\mu \nu}$.

$$
==* * *==
$$

FIRST SEMESTER

MATHEMATICAL PHYSICS-I

MSP-101
(Use separate answer scripts for Objective \& Descriptive)
Duration: 3 hrs .

(PART-A: Objective)

Time: 20 min .

Choose the correct answer from the following:

1. If $f(z)$ is analytic function and $f^{\prime}(z)$ is continuous at each point within and on the curve ' C ' then:
a. $\int_{C} z f(z) d z=0$
b. $\int f(z) d z=0$
c. $\int_{C} f(z) d z=1$
d. $\int_{C} \frac{f(z)}{z} d z=0$
2. The polar form of the complex number $z=x+i y$ is:
a. $\mathrm{re}^{\mathrm{i} \theta}$
b. $\mathrm{re}^{-\mathrm{i} \theta}$
C. $\mathrm{re}^{\mathrm{i} \frac{\theta}{2}}$
d. $r e^{-i \frac{\theta}{2}}$
3. The argument of the complex number $\frac{1-i}{1+i}$ is:
a. п
b. π
.
d. 2π
4. The value of the integral $\int \frac{\sin Z}{z} d z$ is:
a. 1
b. -1
c. 0
d. Π
5. Laplace transformation of the Dirac delta function $\delta(x-a)$ (if $e^{\text {is } x}=f(x)$) is:
a. $\frac{1}{\pi} e^{\text {isa }}$
b. $\frac{1}{\sqrt{2 \pi}} e^{\text {is }}$
c. $\frac{1}{2 \pi} e^{\text {isa }}$
d. $\frac{1}{\sqrt{2 \pi}} e^{-i s a}$
6. The general form of the Sturm-Lioville equation (where p, q, r and r^{\prime} are continuous on $[\mathrm{a}, \mathrm{b}]$, with $\mathrm{p}(\mathrm{x})>0$ on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{r}(\mathrm{x})>0$ on $[\mathrm{a}, \mathrm{b}])$ is:
a. $[r(x) y]^{\prime}+[q(x)+\lambda p(x)] y=0$
b. $[r(x) y]+[q(x)+\lambda p(x)] y=0$
c. $\left[r(x) y^{\prime}\right]^{\prime}+[q(x)+\lambda p(x)] y=0$
d. $\left[r(x) y^{\prime}\right]^{\prime}+[q(x)+\lambda p(x)]^{\prime} y=0$
7. Residue of $f(z)=\frac{(z+1)}{(z-1)(z-2)}$ at $z=1$ is:
a. -2
b. 1
c. 4
d. 2
8. The value of the integral $\int_{0}^{2}\left(\mathrm{x}^{3}+3 \mathrm{x}+2\right) \delta(\mathrm{x}-3) \mathrm{dx}$ is:
a. 16
b. 38
c. 0
d. 2
9. If two vectors X and Y are orthogonal, then they satisfy the following relation:

(PART-B: Descriptive $)$

[Answer question no. 1 \& any four (4) from the rest]

b. Find the Laplace transform of $(1+\sin 2 t)$.

1. Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ where $\mathrm{c}^{2}=\mathrm{T} / \mathrm{m}=$ constant subject to condition: Boundary condition $u(0, t)=u(l, t)=0$ and initial condition: u $(x, 0)=f(x)$ and at $t=0$ where $l=$ length of the string or wire of wave propagation.
2. a. State and prove Taylor's theorem of a complex function.
b. Evaluate the residues of $\frac{z^{2}}{(z-1)(z-2)(z-3)}$ at $1,2,3$ and infinity and show
that their sum is zero.
c. Prove that $\int_{c} \frac{e^{-z}}{z^{2}} d z=-2 \pi i$
3. a. State and Prove Sturm-Liouville Theorem (Orthogonality of Eigen function).
b. Solve $\frac{\partial^{2} z}{\partial x \partial y}=x^{2} y$ subject to the condition $z(x, 0)=x^{2}$ and $z(1, y)=\cos y$.
4. a. What do you mean by similarity transformation?
b. State the theorem of diagonalization of a matrix. Find the eigen values, eigen vectors, model matrix and then diagonalize the following matrix: $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$
5. a. Define Hermitian matrix.
b. Prove that:
i. $A=\left[\begin{array}{ccc}1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -\mathrm{i} & 0\end{array}\right]$ is Hermitian, and
ii. $A=\left[\begin{array}{ccc}-i & 3+2 i & -2-i \\ -3+2 i & 0 & 2-4 i \\ 2-i & -3-4 i & -2 i\end{array}\right]$ is skew-Hermitian.
c. Express the matrix $A=\left[\begin{array}{ccc}i & 2-3 i & 4+5 i \\ 6+i & 0 & 4-5 i \\ -3 & -4 i & 5\end{array}\right]$ as the sum of Hermitian and skew-Hermitian matrix.
6. Define Laplace transformation and solve the following problems:
a. Find the Laplace transformation of $f(t)$ defined as
$f(t)=\left\{\begin{array}{c}t / k, \text { when } 0<t<k \\ 1, \text { when } t>k\end{array}\right.$
. Sum of the eigen values of a matrix is equal to the sum of the............... elements.
a. Diagonal
b. Conjugate of diagonal
c. Off diagonal

$$
\text { b. } \frac{1}{\frac{s-2}{s}} \frac{(s-a)^{2}}{\left(\frac{s}{s}\right.}
$$

16. Fourier transform of integral, $F\left[\int_{0}^{t} f(t) d t\right]$ is equals to:
a. $i \omega F(\omega)$
b. $\frac{1}{\hbar \omega} F(\omega)$
d. $\frac{1}{-} F\left(\frac{\omega}{a}\right)$
17. The number of components of a second rank tensor in an N -dimensional space is:
a. 2^{N}
b. 2 N
c. N^{2}
d. $2 \mathrm{~N}-1$
18. The value of the identity $\varepsilon_{i k s} \varepsilon_{m p s}$ is:
a. 0
b. +1
c. -1
d. 4
19. If $g_{\mu \nu}=0$ for $\mu \neq v$ and μ, ν, σ are unequal indices then, the value of $\Gamma_{\mu \mu}^{\mu}$ is:
a. 0
b. $\frac{1}{2} \frac{g_{\mu \mu}}{\partial x^{\mu}}$
c. $-\frac{1}{2 g_{v v}} \frac{g_{\mu \mu}}{\partial x^{v}}$
d. $\frac{1}{2} \frac{\partial\left(\log \vartheta_{\mu \mu \mu}\right)}{\partial x^{\mu}}$
20. If $A_{\mu \nu}$ is an antisymmetric tensor, the value of its component A_{11} is:
a. 1
b. 0
c. -1
d. 2
