7. What is the definition of Continuity? Is $f(x)=\left\{\begin{array}{l}-x, x<0 \\ x, 0 \leq x \leq 1 \\ 2-x, x>1\end{array}\right\}$
continuous at $x=0$ and $x=1$
8. a. Prove that:
$\frac{\cos ^{2} A}{\cos A-\operatorname{Sin} A}+\frac{\operatorname{Sin}^{2} A}{\operatorname{Sin} A-\cos A}=\cos A+\sin A$
b. What is value of $\operatorname{Sin} 30^{\circ}, \cos 60^{\circ}, \tan 90^{\circ}$

REV-00
MSM/08/13

M.Sc. MATHEMATICS
 FOURTH SEMESTER
 GENERAL MATHEMATICS
 MSM-406 (MDC)

(Use separate answer scripts for Objective \& Descriptive)
Duration: 3 hrs.

(PART-A: Objective)

Time: 20 min .

Choose the correct answer from the following:

1. Which of the following is true?
a. Determinant of a unit matrix is 1 .
b. If there are two identical rows or columns in a matrix, then determinant of the matrix is 1
c. A diagonal matrix whose all the diagonal matrix are unity is called null matrix.
d. None of these.
2. A function $f: A \rightarrow A$ such that $f(x)=x, x \in A$ is called:
a. Algebraic function
b. Rational function
c. Identity function
d. None of these
3. Which of the following is true for a set A ?
a. $A \cup A=\varnothing$
b. $A \cap A=\emptyset$
c. $A \cap A=A$
d. None of these
4. A function which is both one one and onto is called:
a. Injective function
b. Surjective function
c. Bijective function
d. None of these
5. A relation R on a set A is called equivalence relation if it is:
a. Reflexive
b. Symmetric
c. Transitive
d. All of the above
6. The minor of -1 in $\left(\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right)$ is:
a. 5
b. -5
c. 2
d. -2
7. Which of the following is true for a matrix A ?
a. $A^{-1}=\frac{\operatorname{adj} A}{|A|},|A|=0$
b. $A^{-1}=\frac{|A|}{\text { adjA }},|A| \neq 0$
c. $A^{-1}=\operatorname{adj} A$
d. $A^{-1}=\frac{\operatorname{adj} A}{|A|},|A| \neq 0$
8. Let $A=\{0,1,2,3\}$. Consider the relation $R=\{(0,0),(1,1),(2,2),(3,3)\}$. Then R is:
a. Reflexive
b. Symmetric
c. Transitive
d. All of the above
9. Equation of X -axis is:
a. $Y=0$
b. $X=0$
c. $Y=K$
d. $X=K$
10. Gradient form of a Straight line is:
a. $Y=m x$
b. $Y=m x+c$
c. $Y=0$
d. $Y=0$
11. If two lines of gradient m_{1} and m_{2} are parallel , then:
a. $m_{1}<m_{2}$
b. $m_{1}>m_{2}$
c. $m_{1}=m_{2}$
d. $m_{1} \neq m_{2}$

PART-B: Descriptive

Time : 2 hrs. 40 min .

2. $\frac{d}{d x}\left(x^{n}\right)=$?
a. x
b. x^{2}
c. x^{3}
d. $n x^{n-1}$
3. $\int\left(x^{\prime}\right) d x=$?
a. $\frac{x^{n+1}}{n+1}$
c. $\frac{x^{n+1}}{n-1}$
b. $\frac{x^{n}}{n}$
d. $\frac{x^{n+1}}{n}$
4. $\frac{d}{d x}(\log x)=$?
a. 1
b. $\frac{1}{x}$
d. $x-1$

$$
\begin{aligned}
& \text { 15. } \frac{d}{d x}(f(x)+g(x))=\text { ? } \\
& \begin{array}{ll}
\text { a. } \frac{d}{d x} f(x)-\frac{d}{d x} g(x) & \text { b. } \frac{d}{d x} f(x)=\frac{d}{d x} g(x) \\
\text { c. } \frac{d}{d x} f(x)+\frac{d}{d x} g(x) & \text { d. } \frac{d}{d x} f(x)>\frac{d}{d x} g(x)
\end{array}
\end{aligned}
$$

16. A function $f(x)$ is continuous at a point a if:

$$
\begin{aligned}
& \text { a. } \lim _{x \rightarrow a} f(x)=f(a) \\
& \text { c. } \lim _{x \rightarrow a} f(x)>f(a)
\end{aligned}
$$

b. \lim
$x \rightarrow a \quad f(x) \neq f(a)$
d. \lim
$x \rightarrow a$
17. In $\lim f(x)=f(a)$ $x \rightarrow a$
a. x fixed point
b. x moving point and a fixed point
d. none
18. $\int(\cos x) d x=$?
a. $\sin x$
b. $\cos x$
c. $\tan x$
d. $\cot x$
19. $\int(2) d x=$?
a. 2
b. -2
c. $3 x$
d. $2 x$

$$
\begin{aligned}
& \text { 20. In the equation of a straight line } y=m x+c, m \text { is } \\
& \begin{array}{ll}
\text { a. slope } & \text { b. gradient } \\
\text { c. point } & \text { d. none of the above }
\end{array}
\end{aligned}
$$

[Answer question no. 1 \& any four (4) from the rest]

1. Find the derivative of the following:
a) $\frac{d}{d x}\left(\sin x+x^{2}\right)$
b) $\frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)$
2. a. Define the following:
(i) Union of two sets
(ii) Difference of two sets
b. Prove the following by using Venn diagram:

$$
A \cup(B \cup C)=(A \cap B) \cup(A \cap C)
$$

c. Define composition of functions. Prove that if f and g are one one functions, then $f o g$ is also one one function.
3. a. Find the determinant of the following:
(i) $\left|\begin{array}{ccc}0 & -h & g \\ h & 0 & -f \\ -g & f & 0\end{array}\right|$
(ii) $\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|$
b. Show that $\left|\begin{array}{ccc}1+x & y & z \\ x & 1+y & z \\ x & y & 1+z\end{array}\right|=1+x+y+z$.
4. Find the limit of:
a. $\lim _{x \rightarrow a} \frac{x^{3}-8}{x^{2}-4}$
b. $\lim _{x \rightarrow a} \frac{\sqrt{1+x}-\sqrt{1+x}}{x}$
5. What is the distance of the point (a, b) from X-axis? Find the locus of the point which is equidistant from the point $(1,1)$ and $(-1,-1)$.
6. a. If $A=\left(\begin{array}{lll}2 & 3 & 0 \\ 2 & 2 & 0 \\ 1 & 3 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 3 & 1 \\ 2 & 2 & -2 \\ 5 & 5 & 5\end{array}\right)$, then find $A B$ and $B A$.
b. Find the inverse of the following matrix:

$$
A=\left(\begin{array}{ccc}
4 & -5 & -11 \\
1 & -3 & 1 \\
2 & 3 & -7
\end{array}\right)
$$

