8. (a) Let S^* be an extension of S. Prove that if S^* is consistent, then so is S. (b) Describe G the extension of K_{L_G} with usual meaning in A. G.

4

Hamilton's Logic for Mathematics.

2.

4+6=10

REV-00 MSM/03/08

M.Sc. MATHEMATICS FOURTH SEMESTER MATHEMATICAL LOGIC

MSM-403 B

(Use separate answer scripts for Objective & Descriptive)		
Duration : 3 hrs.	Full Marks: 70	
(<u>PART-A : Objective</u>)		
Time : 20 min.	Marks: 20	
Choose the correct answer from the following: 1x20=2		
1. Find out the "True" statement variable.		
a. Square root of 5 is 2	b. 30=1	
c. Cabbage is a fruit	d. Wood is a metal	
2. Find out the statement form having truth value "F" for truth values "T" of p, q .		
a. $p \wedge q$	b. $p \lor q$	
c. $p \rightarrow q$	d. $p \wedge \sim q$	
3. If the truth values of p and q are T and F r	espectively, then the truth value of $\varphi \rightarrow q$ is:	
a. I c. Cannot be said	d None of these	
c. Califiot de Salu	a. None of these	
 a. ^L_L A and ^L_L (~A) for any <i>wf A</i>. b. Any <i>wf A</i> is not a theorem of L. c. For no <i>wf A</i> of L are both A and (~A) d. A and (~A) are theorems of the extension 	theorems of the extension.	
5. By which of the following connectives the value T?	truth values T and F can result in truth	
a. ↔	b.∧	
$c. \rightarrow$	d. ∨	
6. For no natural number <i>n</i> is n^{j} equal to:		
a. ()	b. 1	
c. 2	d. 3	
7. An argument form is a sequence which is:		
a. Finite	b. Infinite	
c. Both	d. None of these	
8. Every atomic formula of <i>L</i> is ao	f L.	
a. wf	b. Not a <i>wf</i>	
c. May or may not be a <i>wf</i>	d. None of these	
9. For any wfs A, B of L, $v(A \rightarrow B) = F$ if and	only if:	
a. $v(A) = T$ and $v(B) = F$	b. $v(A) = T$ and $v(B) = T$	
c. $v(A) = F$ and $v(B) = T$	d. $v(A) = F$ and $v(B) = F$	

10. If $[: (A \rightarrow B)$ then pick up the righ	t one.	(<u>PART-B : Descriptive</u>)
a. A, B are wfs of L	b.	Time : 2 hrs. 40 min.
c. $\left[\cup \left\{ A \right\}_{L}^{\vdash} B \right]$	$\mathbf{d}, \!$	[Answer question no.1 & any four (4) from the rest]
11. How many truth functions will be obtained for a statement form involving <i>n</i> different statement variables?		1. (a) Show that $(\sim (p \land q))$ is logically equivalent to $((\sim p) \lor (\sim q))$. (b) If \mathscr{A} and $(\mathscr{A} \to \mathscr{R})$ are tautologies, then show that \mathscr{R} is a tautology
a. 2^n	b. 2^{2n} d. None of these	Show that the statement form $(((x_n) \rightarrow a) \rightarrow (n \rightarrow (x_n)))$ is a
12. If $P(r) = \{(-r)^2 = r^2\}$ where the d	omain is all integers then the truth value is:	contradiction.
a. T	b. F	2 (a) Show that the pairs $\{x, A\}$ for \mathcal{W} and $\{x, J\}$ are adequate sets of
c. Cannot be said	d. None of these	connectives.
13. <i>ZF</i> is a formal system of		(b) Investigate the validity of the argument form
a. Set theory	b. Group theory	$(p \rightarrow q), ((\sim q) \rightarrow r), r; \therefore p$
c. Both (i) and (ii)	d. None of these	
14. Peano's postulates are a f	for the system of natural numbers.	3. State a set of axiom schemes and a rule of inference for the formal theory
a. MP	b. Set of Axioms	L of propositional calculus. For any two wis \mathcal{A} and \mathcal{B} of L prove that $(\sim \mathcal{B})$
c. Extersions	d. None of these	$(\mathscr{B} \to \mathscr{A})$ is a theorem of L.
15. A wf , \mathcal{A} of \mathcal{L} is closed if no variables occurs in \mathcal{A} .		4. Define a valuation of <i>L</i> . State and prove the Soundness theorem for <i>L</i> .
a. Bound	b. Open	5. State and prove the converse of the deduction theorem
c. Free	a. None of these	For any wfs A and B of L prove that $((\sim A \rightarrow (A) \rightarrow A)$ is a theorem of L
16. P: Some people are intelligent. The	symbol of the statement is:	
a. $(\sim x)(M(x) \land S(x))$	b. $(\exists x)(M(x) \rightarrow S(x))$	6. (a) Define the following:
c. $(\exists x)(M(x))(X(x))$	a. None of these	(i) Free term in a $wf \mathcal{A}$.
17. P: Not all birds can fly. The symbol of the statement is:		(ii) Interpretation I of \mathcal{L} .
a. $(\forall x)(B(x) \rightarrow F(x))$	b. $\sim (\exists x)(B(x) \to F(x))$	(b) Prove that if in a particular interpretation I, the wfs \mathcal{A} and $\mathcal{A} \rightarrow \mathcal{B}$ are
c. $\sim (\forall x) (B(x) \rightarrow F(x))$	d. None of these	true, then \mathcal{B} is true.
18. Consider the following statements:		(c) State the conditions where a wf of \mathcal{L} is logically valid and contradictory.
(i) A wf . of \mathcal{A} of \mathcal{L} is logically valid	if \mathcal{A} is true in every interpretation of \mathcal{L} .	7. (a) Translate the following into symbols.
(ii) \mathcal{A} is contradictory if it is false in	every interpretation.	(i) Not all birds can fly.
a. (1) is true	D. (11) IS true d. Noither (i) per (ii) are true	(ii) Anyone can do it.
c. bour (i) and (ii) are true	u. Mentier (i) nor (ii) are true	(iii) Some people are intelligent.
19. A <i>wf A</i> of <i>L</i> is a tautology if:		(iv) There is an integer which is greater than every other integer.
a. $v(A) = v(\sim A)$	$\mathbf{b}.\ \mathbf{v}(A)=F$	(v) Not every function has derivative.
$c. \ v(A) = T$	d. A is valid	(b) Define the following:
20. If $[\cup \{A\}_L^{\vdash} B$ then which one is corrected by the second sec	ect?	(i) First order language
a. $[\cup, \{A \to B\}$	b. $\vdash (A \rightarrow B)$	(ii) Atomic formula in <i>L</i> .
c. $\Gamma \vdash (\sim A \rightarrow A)$	d. None of the these	(iii) A well formed formula in <i>C</i> .
		(a) Write the first order language of the following:
		$x = x = x = by$ using following symbols - stands for identity t^2
		$x_1 + x_2 = x_1 x_2$, by using following symbols a_1 stands for identity, A_1
		stands for =, f_1^- stands for the function which takes each element to its
		inverse, f_1^2 stands for group operation.

3

Marks : 59

4+6=10

5+5=10

4+6=10

2+8=10

5+5=10

4+4+2=10

5+3+2=10

2