M.Sc. MATHEMATICS FOURTH SEMESTER FLUID DYNAMICS MSM-403 A

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs.

-	_	221		-			2
	PA	RI	-A	:(Jbi	lecti	ve

Time: 20 min.

Choose the correct answer from the following:

	oute the correct another grow the gener					
1.	When a fluid is incompressible, then we have a. ∇ . $q = 0$	e: b. $\nabla \times q = 0$ d. None of them				
2.	When a force F is conservative and V is the p a. F=0	en a force F is conservative and V is the potential, then: $F=0$ b. $F = -\nabla V$				
	c. $F = V$	d. None of these				
3.	The equation $\vartheta = \frac{\mu}{\rho}$ is known as:					
	a. Perfect fluid	b. Kinematic viscosity				
	c. Both of these	d. None of these				
4.	The boundary layer concept was given by:					
	a. Galileo	b. Newton				
	c. Prandtl	d. None of these				
5.	In equation of motion the non linear term is:					
	a. (∇. q)	b. (∇. q)q				
	c. zero	d. None of these				
6.	The shear stress distribution in any flow is given by:					
	a. $\tau = \mu \frac{du}{dt}$	b. $\tau = -\mu \frac{du}{dt}$				
	c. absent	d. None of these				
d. Hole of these						
1.	From no slip condition of a viscous fluid it f	blows that: $h_{\alpha=0}$				
	c. $q = -1$	d. zero				
8.	The no slip condition of a viscous fluid in case of a closed region is satisfied:					
	c. Both of these	d. None of these				
0	When Deep 14's grant has is some loss than 1 days the inset is the					
9.	viscosity is:					
	a. Less	b. More				
	c. Equal	d. None of these				
10.	The friction in the region outside the boundary layer is:					
	a. High	b. Low				
	c. Both of these	d. None of these				

1

Full Marks: 70

Marks: 20

1x20=20

 An ideal fluid is that substance which is a. Capable 	of sustaining shearing stresses.	(PART R : Descriptive)
c. Both of these	d. None of these	(<u>PARI-D. Descriptive</u>)
12. Mercury is an example of:		Time : 2 hrs. 40 min.
a. Non-Newtonian fluid	b. Newtonian fluid	Answer question no 1 & any four (4) from the rest
c. Both of these	d. None of these	[mone quease mit ease (frammered)
13. In Non-Newtonian Fluid, shear stress is	to velocity gradient.	1. Show that (i) $\int_0^{\delta} \frac{u}{u} dy = \delta - \delta_1$
a. Proportional	b. Not proportional	(ii) $\int_{0}^{\delta} (\frac{u}{c})^2 dv = \delta - \delta_1 - \delta_2$
c. Both of these	d. None of these	$(\gamma)_{0}$
14. If the fluid is non-viscous, then the equation	on of motion takes the form of:	(iii) $\int_0^\infty \left(\frac{1}{v}\right)^3 dy = \delta - \delta_1 - \delta_3$
a. Lagrange's equation	b. Navier Stoke's equation	where the symbols have their usual meaning.
c. Euler's equation	d. None of these	2. Discuss Karman's momentum integral equation.
15. Euler's equation of motion is suitable for a	: The second	3. The velocity distribution in the boundary layer over a flat plate i
a. Viscous fluid	b. Perfect fluid	$u = U(1 - e^{-\eta}), \eta = \frac{y}{2}$. Find the skin friction, displacement thick
c. Real fluid	d. None of these	and momentum thickness
16. Fluid motion is said to be irrotational if:		and momentum duckness.
a. Divergence of fluid velocity is zero	b. Curl of fluid velocity is zero	4. A liquid occupying the space between two coaxial circular cylind
c. Gradient of fluid velocity is zero	d. None of these	acted upon by a force $\frac{e}{r}$ per unit mass, the lines of force being circ
17. The rate of deformation tensor in a fluid is	zero if the fluid is:	around the axis. Prove that in the steady motion, the velocity at a
a. Homogeneous	b. Irrotational	point is given by the formula $\frac{c}{2} \left\{ \frac{b^2}{a} \frac{r^2 - a^2}{r^2 - a^2} \log \frac{b}{a} - r \log \frac{r}{a} \right\}$
c. Incompressible	d. Nonviscous	2v r v - a a a
18. Viscous stress tensor is a function of		5. Write a short note on Reynold's number. Show that for a steady
a. Vorticity tensor	b. Deformation tensor	small Reynold's number, the Stoke's stream function ψ satisfies t
c. None of these	d. All of these	equation $E^4\psi = 0$, where $E^2 \equiv \frac{\partial^2}{\partial r^2} + \frac{\sin\theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin\theta} \frac{\partial}{\partial \theta}\right)$
The vorticity equation for an incompressible viscous fluid is:		6 In the steady motion of a viscous incompressible fluid through a
a. $\frac{d\Omega}{dt} = (\Omega, q)q + vq^2$	b. $\frac{d\Omega}{d\Omega} = (\Omega, \nabla) q + \nu \nabla^2 q$	circular pipe show that the velocity $a = \frac{p}{r}(a^2 - r^2)$ where P
dt $(O, T) = 1 + T^2 O$	dt d None of these	circular pipe, show that the velocity $q_z = \frac{1}{4\mu}(u^2 - r^2)$, where $-r$
$\frac{dt}{dt} = (12, \mathbf{v})q + \mathbf{v} \mathbf{v}^2 \mathbf{U}$	w TYONG OF THESE	pressure gradient along the axis, a the radius of the pipe and r th distance from the axis
20. If the fluid is viscous, then the equation of	motion takes the form of:	distance from the unit.
a. Navier Stoke's equation	b. Euler's equation	7. Deduce Navier Stoke's equation.
c. Oseen's equation	d. None of these	8 Write in details shout group velocity of a wave

2

isual meaning. integral equation. boundary layer over a flat plate is 4+3+3=10 skin friction, displacement thickness etween two coaxial circular cylinders is mass, the lines of force being circles he steady motion, the velocity at any $\left\{\frac{b^2}{r}\frac{r^2-a^2}{b^2-a^2}\log\frac{b}{a}-r\log\frac{r}{a}\right\}$ number. Show that for a steady flow at toke's stream function ψ satisfies the $\frac{\partial^2}{\partial r^2} + \frac{\sin\theta}{r^2} \frac{\partial}{\partial \theta} \big(\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \big)$

15 1

Marks: 50

2+4+4=10

10

10

10

10

10

10

- us incompressible fluid through a ocity $q_z = \frac{P}{4\mu}(a^2 - r^2)$, where – *P* is the s, a the radius of the pipe and r the radial
- 8. Write in details about group velocity of a wave.
 - = = *** = =