(<u>PART-B : Descriptive</u>)		MSM/15/20
Time : 2 hrs. 40 min.	Marks: 50	
[Answer question no.1 & any four (4) from the rest]		
 a. State and prove the second shifting theorem for Laplace Transform. Hence find L[(t - 1)²U(t - 1)]. b. If L[tsinωt] = 2ωs/(s² + ω²)² then find L[ωtcosωt + sinute. 	6+4=10	Duration : Time : 20 n
	Contraction of the	Choose th
2. a. If $\mathcal{L}[f(t)] = f(s)$ then show that $\mathcal{L}[f'/(t)] = s^2 f(s) - sf(0) - f'(0)$ b. Solve:	3+4+3=10	1. The Lat
$(D^2 + 4)y - t$ under the conditions $y(0) - y'(0) - 0$ c. Find $\mathcal{L}^{-1}\left[\frac{s}{s^2 + a^2}\right]$ by applying Convolution Theorem.	D REAL PROPERTY OF A REAL PROPER	a. $\frac{3!}{s}$ c. $\frac{s}{\Gamma(3)}$
3. State Euler's-Lagrange Theorem. Prove that:	2+8=10	Г(3
$F_{y} - \frac{d}{dx} F_{y'} = 0$		2. In the L a. posi
4. State and prove Euler-Poisson Equation.	3+7=10	c. valu
5. What is Canonical Form? Write down the Canonical Form of one- dimensional wave equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$	2+8=10	3. $\mathcal{L}[f/(t)]$ a. 1/s c. 1
6. Find the characteristics of: a. $y^2r - x^2t = 0$ b. $x^2r + 2xys + y^2t = 0$	6+4=10	 4. Laplace a. f (s c. f (s
7. Find the extremal of the functional: a. $\int_{a}^{b} \left(y + \frac{y^{3}}{3} \right) dx$	5+5=10	5. One dir a. para c. ellip
b. $\int_{1}^{3} (3x - y) dx$ that satisfy the boundary conditions y(1) = 1, y(3) = 9/2		6. λ quad a. y^2 , c. $^2\lambda^2$
 If both the ends of a bar of length a are at temperature zero and the initiatemperature is to be prescribed function f(x) in the bar, then find the temperature at a subsequent time t. 	ial 10	7. I[y(x)] a. integr
Or The faces x=0 and x=a of an infine slab are maintained at zero temperat Given that the temperature u(x,t)=f(x) at t=0.Determine the temperature a subsequent time t.		c. fund ^{8.} In Eule a. para
= = *** = =		c. cons

6

113/20		
M.Sc. MATH FOURTH SI ADVANCED PARTIAL DIF	EMESTER	
MSM		
(Use separate answer scripts fo		
ation : 3 hrs.		Full Marks: 70
(<u>PART-A : O</u>	<u>Dbjective</u>)	
e : 20 min.		Marks:20
ose the correct answer from the follow	wing:	1x20=20
The Laplace Transform of the function t^3 is a. 3!	: b. Г(4)	
s	b. $\frac{\Gamma(4)}{s^n}$ d. $\frac{3!}{s^4}$	
c. <i>s</i> !	d. 3!	
Γ(3)	<u>s</u> ⁴	
n the Laplace Transform of the function $f($	t), t takes on:	
a. positive finite values	b. negative values	
c. values in the interval $0 \le t < \infty$	d. complex values	
$\mathcal{L}[f'(t)]$ for $f(t) = t$ is:		
a. 1/s	b. _S ²	
c. 1	d. 0	
Laplace Transform of $\int_0^t f(u) du$ for $\mathcal{L}[f(u)]$	[t] = f(s) is:	
a. $f(s^2)$	$b.s^2f(s)$	
c. f(s)/s	d. sf(s) - f(0)	
One dimensional Wave equation $r - t = 0$		
a. parabolic	b. hyperbolic	
c. elliptic	d. none of the above	
λ quadratic equation of $y^2r - x^2t = 0$ is:		
$\mathbf{a} \cdot \mathbf{y}^2 \lambda^2 - \mathbf{x}^2 = 0$	b. ${}^{2}\lambda - x^{2} = 0$	
c. ${}^{2}\lambda^{2} + x^{2} = 0$	$d. ^{2} \lambda^{2} - x = 0$	
<i>n</i> + <i>n</i> = 0		
$I[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx$ is said to be:		
a. integral	b. constant	
c. functional	d. variable	
n Euler's Equation ∂y is known as:		
a. parameter	b. function	1.5
c. constant	d. variation	

2018/06

REV-00

.

9. In Euler-Lagrange Equation, the condition for x is:

a.	$x_1 \leq x \leq$	<i>x</i> ₂	b. x_1	$> x \leq x_2$
c.	$x_1 \leq x >$	<i>x</i> ₂	d. x_1	$\leq x = x_2$

10. In Lagrange equation we consider F(x, y, y) is:

a. differentiable

c. continuous

11. What is value of $\left(\frac{d\phi}{d\alpha}\right)_{\alpha=0}$ is known as:

a. variation c. function of variation

12. Which is correct of the following?

a. $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial y'} \right) = 0$ **b.** $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) + \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial y''} \right) = 0$

c.
$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial y''} \right) = 0$$
 d. $\frac{\partial F}{\partial y} + \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{d^2}{dx^2} \left(\frac{\partial F}{\partial y''} \right) = 0$

13. A necessary condition for extremum is: a. variation decreases c. variation increases

14. The Heat Equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \left(\frac{\partial u}{\partial t} \right)$

a. two dimensional c. both two and three b. three dimensional

b. variation vanishes

d. none of the above

d. one dimensional

15. The solution of $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \left(\frac{\partial u}{\partial t} \right)$ be of the form: **b.** u(x,t) = X(t)T(t)a. u(x,t) = X(x)T(t)**d.** u(x,t) = X(x)c. u(x,t) = X(x)T(x)

16. The characteristics equation of Rr + Ss + Tt + f(x, y, z, p, q) = 0 are:

$$\frac{dy}{dz} + \lambda_1 = 0$$

$$\frac{dy}{dz} + \lambda_2 = 0$$

$$\frac{dz}{dx} + \lambda_1 = 0$$

$$\frac{dy}{dx} + \lambda_2 = 0$$

$$\frac{dy}{dx} + \lambda_2 = 0$$

$$\frac{dy}{dx} - \lambda_1 = 0$$

$$\frac{dy}{dx} - \lambda_2 = 0$$

b. twice differentiable d. integrable

b. variation of the functional d. function

a. real c. complex

which are:

b. independent d. none of the above

b. real and distinct

d. distinct and unequal

19. In one parameter family of curves in Euler's equation

$y(x,\alpha) = y(x) + \alpha$	$[\overline{y}(x) - y(x)]$, the value of α are:
a. 0,3	b. 0,0
c. 1,-1	d. 0,1

17. In $R\lambda^2 + S\lambda + T = 0$ if $S^2 - 4RT > 0$ then λ value:

20. The partial differential equation of second degree can be classified as: b. three a. two c. four d. five

18. For reducing a hyperbolic equation to its canonical form we take two variable u and v

2