REV-00 MSM/39/44

M.Sc. MATHEMATICS THIRD SEMESTER FUNCTIONAL ANALYSIS

MSM-302

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs.

PART-A	A:Ob	<i>jective</i>

Time: 20 min.

Choose the correct answer from the following:

1. Which of the following is false?

- a. Every vector space is a metric space.
- b. Every normed linear space is a metric space.
- c. Every metric space is a normed linear space.
- **d.** *R*^{*n*} is a banach space w.r.t. any norm.
- 2. A non-empty subset of a normed space is compact if it is:
 - a. Closedb. Completec. Boundedd. Both (a) and (c)
- 3. A linear map from a normed space X to Y is continuous iff T is:
 - a. Bounded b. Convergent
 - c. Continuous d. Complete
- 4. Which of the following space is not complete?
 - a. The space l^p
 - b. the space l∞
 - **c.** The space C[0,1] of continuously differentiable function over the norm $||x||_1 = \int_{-1}^{1} |x(t)|$ is complete.
 - d. None.
- 5. Which of the following is false?
 - **a.** The set *B*(*X*, *Y*) of all bounded linear operators from *X* into *Y* is a subspace of the space *L*(*X*, *Y*).
 - b. A finite dimensional normed space is not a banach space.
 - c. All norms on finite dimensional linear space are equivalent.
 - d. None.

6. Which of the following is/are examples of commutative banach algebra?

a. <i>R</i>	b. C
c. Both R and C	d. None

7. Two norms $\|.\|_1$ and $\|.\|_2$ are said to be equivalent if $\exists m, M > 0$ such that:

a. $m \ x\ _1 \le \ x\ _2 \le M \ x\ _1$	b. $m \ x\ _1 \ge \ x\ _2 \ge M \ x\ _2$
c. $m \ x\ _1 \ge \ x\ _2 \le M \ x\ _2$	$\mathbf{d}.m\ x\ _1 \le \ x\ _2 \ge M\ x\ _2$

- 8. Which of the following statement is true?
 - a. A real inner product space is conjugate symmetric.
 - b. A complex inner product space is linear in the second argument.
 - c. A complex inner product space is symmetric.
 - d. A real inner product space is linear in the first argument.

1

Marks: 20

Full Marks: 70

 $1 \times 20 = 20$

9. Boreil ebesgue theorem deals with which property? a. Boundedness b. Completeness c. Compactness d. None	(<u>PART-B:Descriptive</u>)	
10. A linear map T is said to be invertible if:	Time: 2 hrs. 40min.	Marks: 50
a. T is continuousb. T^{-1} existsc. Both (a) and (b)d. None	[Answer question no.1 & any four (4) from the rest]	
11. Which of the following is true?a. An inner product space is not a normed linear space.b. Any finite dimensional normed linear space is a banach space.	 State and prove Riesz-representation theorem. Also prove that this theorem is not true in an incomplete inner product space. 	7+3=10 5+5=10
 c. The function space C[a,b] is not complete. d. None. 12. The Riesz representation theorem is not true in an inner product space which is: a. Complete b. Not complete c. Compact d. None 	 a. Given that T is a linear operator such that T: X → Y, both X and Y are normed spaces. Prove that T⁻¹ exists and and is a bounded linear operator iff ∃ a constant K > 0 such that Tx _Y ≥ K x _Y, ∀ x ∈ X. b. Prove that the linear space C[a, b] of all continuous functions 	
13. Which of the following statement is false?a. In a Hilbert space the norm induced by the inner product satisfies the parallelogram law.	defined on [a, b] is a banach space.	
 b. In l¹_n space, where n > 1 the parallelogram law not is true. c. In l¹_n space, where n > 1 the parallelogram law is true. d. A complete inner product space is called Hilbert space. 	 a. Given that Y is any subspace in a normed linear space (X, .). Show that Y is a closed subspace. b. State Hahn-Banach theorem. If N is a normed linear space and x_c is a 	4+6=10
 14. Which of the following is false? a. Differential operators are unbounded c. Differential operators are bounded d. None 	non-zero vector in N, then prove that there exists a functional f_0 in N^* such that $ f_0(x_0) = x_0 $ and $ f_0 = 1$.	
 5. Which of the following statement is true? a. Any two norms in a finite dimensional space is always equivalent. b. An inner product space is not a normed space. c. Any two norms in an infinite dimensional space is always equivalent. d. None 	 4. a. Given M be a closed linear subspace of a normed linear space N and let x₀ be a vector not in M. If d is the distance from x₀ to M, then prove that there exists a functional f₀ ∈ N* such that f₀(M) = 0, f₀(x₀) = d and f₀ = 1. b. Write the statements of open mapping theorem and closed graph theorem. 	6+4=10
16. The principle of uniform boundedness is also known as: a. Closed graph theorem b. Riesz theorem c. Open mapping theorem d. Banach-steinhaus theorem 17. Will be of the of the second seco	 5. a. Define Isomorphism in inner product space. Prove that in an inner product space if x_n → x and y_n → y, then ⟨x_n,y_n⟩ → ⟨x, y⟩, as n → ∞. b. If x and y are any two vectors in a Hilbert space H, then prove that 	5+5=10
17. Which of the following is known as Bessel's inequality for finite case? a. $\sum_{i=1}^{n} \langle x, e_i \rangle ^2 \le x ^2$ b. $\sum_{i=1}^{n} \langle x, e_i \rangle ^2 > x ^2$ c. $\sum_{i=1}^{n} \langle x, e_i \rangle ^2 \ge x ^2$ d. $\sum_{i=1}^{n} \langle x, e_i \rangle ^2 = x ^2$	 4⟨x, y⟩ = x + y ² - x - y ² + i x + iy ² - i x - iy ². 6. a. State and prove Banach-Steinhaus Theorem. 	6+4=10
$c. \sum_{i=1}^{i=1} \langle x, e_i \rangle ^2 \ge x ^2 \qquad \qquad d. \sum_{i=1}^{i=1} \langle x, e_i \rangle ^2 = x ^2$	b. Prove that an inner product space is a normed linear space.	
18. A norm in an inner product space is defined by: a. $ x ^2 = \sqrt{\langle x, x \rangle}$ b. $ x = \sqrt[3]{\langle x, y \rangle}$	 7. a. If H is a Hilbert space, then prove that H* is also a Hilbert space with the inner product defined by (f_x, f_y) = (y, x). b. Let T be an operator on a Hilbert space H. Then prove that there 	5+5=10
c. $ x ^3 = \sqrt{\langle x, x \rangle}$ 19. Two vectors <i>x</i> and <i>y</i> are said to be orthogonal if:	exists a unique operator T^* on H such that for all $x, y \in H, (Tx, y) = \langle x, T^*y \rangle$.	
$\mathbf{a}. \langle x, y \rangle = 1$ $\mathbf{b}. \langle x, y \rangle = 2$ $\mathbf{c}. \langle x, y \rangle = 0$ $\mathbf{d}.$ None	 8. a. Define orthonormal set in a Hilbert space. Let <i>x</i> and <i>y</i> be two orthogonal vectors in a Hilbert space H, then prove that 	1+2+3+4=10
 20. Find the correct statement. a. The Hahn-Banach theorem deals with extension of linear functional. b. The series ∑_{n=1}[∞] ⟨x, e_i⟩ ² is divergent. 	$ x + y ^2 = x - y ^2 = x ^2 + y ^2$. Show that the space l^p with $p \neq 2$ is not an inner product space. b. Derive Cauchy- Schwarz inequality from Bessel's inequality.	
c. Orthonormal sets are incomplete. d. None.	== *** ==	
= = * * = =		