M. Sc. MATHEMATICS SECOND SEMESTER

[Answer question no. 1 \& any four (4) from the rest]

1. Deduce the expressions of velocity and acceleration in terms of spherical polar coordinate
2. A uniform rod $A B$ of mass $2 m$ is freely joined at B to a second rod $B C$ of mass m. The rods lie on a smooth horizontal plane at right angles to each other and an impulse I is applied to $A B$ at A in a direction parallel to $B C$. Find the initial velocity of $B C$ and prove that the kinetic energy generated is $\frac{5 l^{2}}{6}$
3. State and prove Kelvin's Theorem.
4. Deduce Euler's equation of motion of a body about a fixed point
5. Obtain the equation of motion for the Lagrangian
$L=a^{2}(1-\cos \theta) \dot{\theta}^{2}-a g(1+\cos \theta)$.
Twice the Kinetic energy of a system is $A \dot{\theta}^{2}+2 H w \dot{\theta}+B w^{2}$, where $\mathrm{A}, \mathrm{H}, \mathrm{B}$ are all functions of θ and w is a constant, also the work function of the field of conservative force U , a function of θ alone, show that $\frac{1}{2}\left(A \dot{\theta}^{2}-B \omega^{2}\right)=U+c$.
6. A particle of mass m moves in a force field of potential V. Write the Hamiltonian and the Hamilton's equation in spherical polar coordinate.
7. Explain about classification of tensor
8. Define Symmetric,Antisymmetric,Outer product of tensor,Contravariant and Covariant tensor
other kinematically possible motion is a statement of
a. Bertrand's Theorem
b. Carnot's Theorem
c. Kelvin's Theorem
d. None of these
9. In second Carnot's theorem, external impulse is
a. present
b. zero
c. absent
d. None of these
10. The angular momentum of a rigid body with one end fixed is given by
a. $\mathrm{L}=\sum_{i} m_{i}\left\{r_{i} \times\left(\vec{w} \times r_{i}\right)\right\}$
b. $\mathrm{L}=\sum_{i} m_{i}\left\{r_{i} \times v_{i}\right\}$
c. Both of these
d. None of these
11. A rectangular parallelepiped with edges a, b and c along x, y and z axis respectively has
the Moment of Inertia about any side equal to
a. $\frac{2}{3} M\left(a^{2}+b^{2}\right)$
b. $\frac{2}{3} M\left(a^{2} b^{2}\right)$
d. $\frac{1}{3} M\left(a^{2}+b^{2}\right)$
12. According to Carnot's Theorem , The Kinetic energy of a system after explosion is increased by the kinetic energy of a relative motion ___ impulse.
a. Before
b. After
c. Both of these
d. None these.
13. The radial acceleration in case of motion of a particle in three dimension with cylindrical polar coordinate is given by
a. $\ddot{r}+r \dot{\theta}^{2}$
b. $\dot{r}^{2}-r \dot{\theta}^{2}$
c. $\dot{r}-r \dot{\theta}^{2}$
d. None of these
14. If product of inertia are zero and the principal moments of inertia is nonzero, then by Kinetic energy of rotation we get the value of T as
a. $2\left[A w_{1}^{2}+B w_{2}^{2}+C w_{3}^{2}\right]$
b. $\frac{1}{2}\left[A w_{1}^{2}+B w_{2}^{2}+C w_{3}^{2}\right]$
c. $\frac{1}{4}\left[A w_{1}^{2}+B w_{2}^{2}+C w_{3}^{2}\right]$
d. $\frac{1}{2}\left[A w_{1}^{2}+B w_{2}^{2}+C w_{3}^{2}\right]$
15. The radial acceleration in case of motion of a particle in three dimension with cylindrical polar coordinate is given by
a. $\frac{1}{r} \frac{d\left(r^{2} \ddot{\theta}\right)}{d t}$
b. $\frac{1}{r} \frac{d\left(r^{2} \theta\right)}{d t}$
c. $\begin{aligned} & r d t \\ & \frac{1}{r} \\ & \frac{d\left(r^{2} \dot{\theta}\right)}{d t}\end{aligned}$
d. None of these
16. The equation $\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{\alpha}}\right)-\frac{\partial T}{\partial q_{\alpha}}=\varphi_{\alpha} \square$ is known as Lagrange's equation for a
a. Holonomic system
b. Holonomic conservative system
c. Non holonomic system
d. None of these
17. In $\sum a_{i} x^{i}, i$ is called
a. Dummy suffix
b. Real suffix
c. Kronecker delta
d. Convention
18. Kronecker delta has
a. One value
b. Two value
d. No value
c. Three value
19. Sum of two tensor is a
a. vector
b. Quotient law
c. tensor
d. product
20. What is value of $A^{/ i}$
a. $\frac{\partial x}{\partial x^{\alpha}} A^{\alpha}$
c. $\frac{\partial x^{/ i}}{\partial x^{\alpha}} A^{\alpha}$
b. $\frac{\partial x^{/ i}}{\partial x} A^{\alpha}$
d. $\frac{\partial x^{/ i}}{\partial x^{\alpha}} A$
b. $\frac{\partial x^{/ i}}{\partial x} A^{\alpha}$
d. $\frac{\partial x^{/ i}}{\partial x^{\alpha}} A$
21. $A^{/ i j}=\frac{\partial x^{/ i}}{\partial x^{\alpha}} \frac{\partial x^{/ j}}{\partial x^{\beta}} A^{\alpha \beta}$ is a tensor of rank
a. One
b. Two
c. Three
d. zero
