REV-00 MSM/39/44

(<u>PART-B : Descriptive</u>)

Time : 2 hrs. 40 min.		
	[Answer question no.1 & any four (4) from the rest]	
1.	What is Laplace Equation.Find Laplace Equation in plane polar coordinate.	2+8=10
2.	 a. State Cauchy problem for first order partial differential equations. b. Reduce the equation ^{∂²z}/_{∂x²} + x² ^{∂²z}/_{∂y²} = 0 into it's canonical form. 	4+6=10
3.	a. Prove the Principle of Invariance of Euler's equation under co- ordinate transform.b. Apply the method of separation of variables to find a solution of the	
	form $u = A(p)e^{ip(t\pm\frac{x}{c})}$ for the one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x}$, for arbitrary forms of the function A.	on
4.	a. State Uniqueness Theorem.	4+6=10
	b. Prove that $y_n = y_0 + \sum_{n=1}^{n} (y_n - y_{n-1})$ must be continuous	5+5=10
5.	a. Prove that $F(\alpha;\beta;\gamma;x) = \frac{\Gamma(\gamma)}{\Gamma(\beta)\Gamma(\gamma-\beta)} \int_{0}^{1} t^{\beta-1} (1-t)^{\gamma-\beta-1} (1-xt)^{-\alpha} dt$	5+5=10
	b. State and proof Gauss Theorem	
6.	a. Find the eigen values and the corresponding eigenfunctions of $X'' + \lambda X = 0, X(0) = 0, X'(L) = 0$	10
7.	What is Singular Solution. Find the Singular Solution of the $1+(y')^2 = \frac{1}{y^2}$ equation	2+8=10
8.	a. Find the general solution of the equation $(D^2 + 2DD^{/} + D^{/2})z = e^{2x+3y}$	5+5=10
	b. From among the curves connecting the points $P_1(1,3)$ and $P_2(2,5)$, find the one on which an extremum of the functional $\int_1^2 y'(1+x^2y') dx$ can be attained.	

M. Sc. MATHEMATICS SECOND SEMESTER DIFFERENTIAL EQUATIONS & SPECIAL FUNCTIONS MSM – 202 (Use Separate Answer Scripts for Objective & Descriptive)				
Γime : 20 min.(PART-A : Objective)Marks : 20				
Cl	hoose the correct answer from the foll	owing: 1×20=20		
1.	Which of the following equations is hyperbolic a. $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$	b. $x^2r - 2xys + y^2t - xp + 3yq = 0$		
	c. $r - 2yp + y^2 z = (y - 2)e^{2x+3y}$	d. $r + 2s + t = 0$		
2	Find out the nonlinear partial differential e a. $p + q = z + xy$	equation b. $yp + xq = \frac{x^2 z^2}{x^2}$		
	c. $x^2 p^2 + y^2 q^2 = z^2$	$d. x^2 z p + y^2 z q = x y$		
3.	The functional $I[y(x)] = \int_{x_1}^{x_2} [p(x)y + q(x)y'] dx$ is			
	a. Linear c. Composite	b. Non-linear d. Multiple		
4.	The functional $\int_{0}^{1} \sqrt{1 + \{y/(x)\}^2} dx$ for a. 0 c. 2	y(<i>x</i>) =1 has the value b. 1 d. 10		
5.	 A geodesic is a a. circle of minimum circumference c. curve on a surface with minimal condition between two fixed points. 	b. plane section of solid coned. hyperbolic curve		
6.	In the equation $F(D, D')z = 0, D$ is a. A variable c. A function of x	b. An operatord. A function of y		
7.	The most general solution for <i>z</i> of the equala. a complex functionc. the sum of complementary function and particular integral	tion $F(D, D')z = f(x, y)$ is b. the sum of two particular integrals d. an infinite series		

= = *** = =

[4]

8. In the one-dimensional wave equation
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x}$$
 the variable u varies in the
a. $xy - plane$
b. $yz - plane$
c. $xyz - space$
d. $x - t$ space

9. The Pochhammer symbol is denoted by

$$\begin{aligned} & (\alpha)_n = \alpha(\alpha+1)....(\alpha+n-1) \\ & \vdots \quad (\alpha)_n = \alpha(\alpha+1)....(\alpha+n) \end{aligned}$$

d. exist

- 10. In Existence and Uniqueness theorem the function f(x,y) is a. Differentiable b. continuous
 - c. Twice differentiable

11. P-discriminant is in involved in the system of equation

a.
$$F(x,y,y') = 0$$

 $\frac{\partial F(x,y,y'')}{\partial y'} = 0$
b. $F(x,y,y'') = 0$
 $\frac{\partial F(x,y,y'')}{\partial y'} = 0$
c. $F(x,y,y') = 0$
 $\frac{\partial F(x,y,y')}{\partial y} = 0$
d. $F(x,y,y') = 0$
 $\frac{\partial F(x,y,y')}{\partial y'} = 0$

12. Node locus included in a. P-disc c. Both

13. Which is correct of the following

a.
$$F(\alpha; \beta; \gamma; x) = F(\alpha; \beta; l; x)$$

c. $F(\alpha; \beta; \gamma; x) = F(\beta; \alpha; \gamma; x)$

14. What is value of $(\alpha)_0 = ?$

a. 1 c. 0

 $15. \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is a Laplace Equation a. One Dimension c. Three Dimension

(y') = 0b. c-disc

d. None of the above

b. $F(\alpha; \beta; \gamma; x) = F(\beta; \alpha; 1; x)$ d. none of the above

Contd

b. 2 d. 3

b. Two dimension d. none

16. What is value of
$$\frac{d}{dx}F(\alpha;\beta;\gamma;x) = ?$$

a. $\frac{\alpha\beta}{\gamma}F(\alpha+1;\beta+1;\gamma+1;x)$
c. $\frac{\alpha\beta}{\gamma}F(\alpha+1;\beta+1;\gamma+1;1)$

17. $\frac{\partial^2 v}{\partial r^2} + \left(\frac{1}{r}\right) \left(\frac{\partial v}{\partial r}\right) + \left(\frac{1}{r^2}\right) \left(\frac{\partial^2 v}{\partial \theta^2}\right) + \left(\frac{\partial^2 v}{\partial z^2}\right) = 0$ is

- a. Wave equation c. Laplace equation
- 18. $(\alpha + n)(\alpha)_n = ?$
 - a. $(\alpha + n)(\alpha)_{n+1}$
 - c. $(\alpha + n)$
- 19. Existence theorem is called existence because it does have a. No value c. value d. none
- 20. C-disc factorised as
 - a. $E \times T \times C$ ^{c.} $E \times T^2 \times C$

b. $\frac{\alpha\beta}{\gamma}F(\alpha;\beta;\gamma;x)$ d. $\frac{\alpha\beta}{\gamma}F(\alpha+1;\beta;\gamma+1;x)$

b. Heat equation d. Heat equation in polar form

b. $(\alpha)_{n+1}$ d. $(\alpha + n)(\alpha)$

b. One value

b. $E \times N^2 \times C$ d. $E \times N^2 \times C^3$

[3]