	b.	Prove that every compact subset A of a Hausdorff space X is compact. Give an example of a compact space which is not Hausdorff.		M
	c.	Prove that a one one continuous map of a compact space onto a Hausdorff space is homeomorphic		(Use Separate An Duration : 3 hrs.
4	. a.	Prove that – Every second countable space is separable.	6+4 =10	Time : 20 min.
	b.	State Urysohn lemma and the Tietze extension theorem.		Choose the correct answer fro
5	• a. b.	Prove that – The union of a collection of connected subspaces of X that have a common point is connected. Show that if X is an infinite set, it is connected in the finite complement topology.	5+5=10	 The image of a connected space a. Derivable c. Continuous and derivable Consider the following two state P: An indiscrete topological space O: A discrete topological space i
6	. a. b.	Prove that - Every interval in \mathbb{R} is connected. State and prove the Intermediate value theorem.	6+4 =10	a. Both P and Q are true. c. Q is true but P is false.
7	. a. b.	Define countable and uncountable sets.Prove that a countable union of countable sets is countable. What is cardinal number. Let α , β and γ be cardinal numbers, then	5+5=10	 3. Consider the following statemer P: If A ⊆ ℝ is not an interval then Q: If A ⊆ ℝ is an interval then A a. Both P and Q are true
8	. A	prove that i. $\alpha \le \alpha$ ii. $\alpha \le \beta$ iii. $\beta \le \gamma \Rightarrow \alpha \le \gamma$ relation <i>R</i> on a topological space (X, \mathcal{T}) is defined as follows:	5+5 =10	 c. Only P is true 4. Let X and Y be topological space X, which one of the following is a. If S is open then f(S) is oper c. If S is connected then f(S) is 5. Consider the following statemer P: Every Lindelof space is second Q: Every second countable space a. Both P and Q are true. c. O is true but P is false.
	R W a. b.	$= \{(x, y) \in X \times X : x, y \in E_{xy}\}$ There E_{xy} is a connected subset of X. Show that – R is an equivalence relation. Define equivalence class with respect to R and prove that equivalence class form a partition on K		 6. Let f: [a, b] → [a, b] be a continue P: there exists x₀ ∈ [a, b] such th Q: there exists x₀ ∈ (a, b) such th a. Only Q is true. c. Both P and Q are false.
		= = *** = =		 7. Let (X, T) be a topological space connected subspace of X and [x] a. R is an equivalence relation.
				c. Both are (a) and (b) are true.

REV-00

MSM/39/44

SECOND SEMESTER TOPOLOGY **MSM - 201** Use Separate Answer Scripts for Objective & Descriptive) Full Marks: 70 [PART-A : Objective] Marks:20 1×20=20 t answer from the following: nnected space is connected if the function is: b. Continuous nd derivable d. None of these wing two statement: opological space is a T_0 -space. logical space is a T_0 -space. are true. b. P is true but Q is false. is false. d. Both P and Q are false. wing statement: an interval then A is connected. interval then A is disconnected are true b. Neither P nor Q is true d. Only Q is true. pological space and let $f: X \to Y$ be a continuous map. For any subset S of e following is true? en f(S) is open. **b.** If *S* is closed then f(S) is closed ed then f(S) is connected d. If S is bounded then f(S) is bounded wing statement: space is second countable space. countable space is Lindelof. are true. b. P is true but Q is false. is false. d. P and Q are fasle. b] be a continuous function. Consider the following statements: $\equiv [a, b]$ such that $f(x_0) = x_0$. $\in (a, b)$ such that $f(x_0) = x_0$. b. Only P is true. are false. d. Both P and Q are true. ological space. Define $R = \{(x, y) \in X \times X : x, y \in E_{xy}\}$, where E_{xy} is ce of X and $[x] = \{y \in X : yRx\}$. Then **b**. [*x*] is the maximal connected space lence relation. containing *x*.

M. Sc. MATHEMATICS

[1]

d. None of these is true.

P.T.O.

2018/06

8. Let $X = \{a, b, c\}$. Which of the following is not a. $\{\emptyset, X\}$ b. $\{\emptyset, \{a\}, X\}$ c. $\{\emptyset, \{a\}, X\}$	a topology on X. }, {b}, {c}, X} d	. None of these			
 9. The derived set of (0,1) is a. (0,1) b. [0,1) 10. The tenelogist's sine surves is 	c. (0,1)	d.[0,1]			
a. Connected but not locally connected c. Connected as well as Locally connected	b. Locally connected bu d. None of these	it not connected			
 11. Let A be a set, then a. There exists a bijection of A with a proper b. There exists a bijective function f:Z₊ → A c. There exists a surjective function f:Z₊ → A d. None of these 	subset of itself A				
 12. Which of the following statement is true for a subset A of a topological space. a. A is the largest closed set conataing A b. If A is closed, then A contains all its limit points c. A is closed if and only if A ≠ A d. None of these 					
 13. Which of the following statement is not true a. A subset of R is compact if and only if it is closed and bounded b. Every subset A of a Hausdorff space is closed. c. A metric space X is sequentially compact if and only if every finite subset of X has a limit point. d. None of these 					
14. Let (X, \mathcal{T}) and (Y, \mathcal{V}) be two topological spaces. Then the topology \mathcal{W} whose base is $E = \{G \times H: G \in \mathcal{T} \text{ and } H \in \mathcal{V}\}$ is called the					
15. For any cardinal number α , a. $\alpha > 2^{\alpha}$ b. $\alpha \le 2^{\alpha}$	d. None of these c. $\alpha \ge 2^{\alpha}$	d. $\alpha < 2^{\alpha}$			
16. If <i>B</i> is base for a topological space (<i>X</i>, <i>T</i>), thena. Intersection of members of <i>B</i>c. Difference of members of <i>B</i>	every T open set can be b. Union of members of d. None of these	expressed as f <i>B</i>			
17. Which of the following is not a neighbourhoo a. (0,2) b.(0,2]	d of 1 c.[1,2]	d. R			
• 18. If $d =$ cardinal number of the set of natural numbers, then	umbers and $c =$ cardinal i	number of the set of			
19. If $X = \{a, b, c\}$ and $T = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, a \in [a]$	then closure of $\{a\}$ w	ill be			
20. If <i>f</i> is a map from a topological space <i>X</i> to a to <i>f</i> is	opological space Y and {a	<i>i</i> } is open in <i>X</i> , then			
a. Continuous at a c. Cannot be said	b. Discontinuous at ad. None of these				

	(<u>PART-B: Descriptive</u>)
Ti	me : 2 hrs. 40 min. Marks : 50
	[Answer question no.1 & any four (4) from the rest]
1.	a. Give the definition of a base in a topological space. Let $X = \{a, b, c, d\}$ and $\mathcal{T} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}\}$. Then show that the collection $\mathcal{B} = \{\{a\}, \{b\}, \{c, d\}\}$ is a base for \mathcal{T} .
	b. If (X, \mathcal{T}) is a topological space and \mathcal{B} is a base for \mathcal{T} , then prove that intersection of any two members of \mathcal{B} is the union of members of \mathcal{B} .
	c. Define Hausdorff space in a topological space. Examine whether the following spaces are Hausdorff or not.

(i) $X = \{a, b, c\}, \mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$

(ii) $X = \{a, b, c, d\}$

 $\mathcal{T} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$

2. a. Define continuity and homeomorphism in a topological space. 2+2+3+3

b. If (X, \mathcal{T}) and (Y, \mathcal{V}) are two topological spaces such that

 $X = \{a, b, c\}, \mathcal{T} = \{\emptyset, \{a\}, \{b, c\}, X\}$ and

 $Y = \{p, q, r\}, \mathcal{V} = \{\emptyset, \{r\}, \{p, q\}, Y\}.$

A function $f: X \to Y$ is defined by f(a) = r, f(b) = p, f(c) = q. Show that f is continuous at each points of X. Also show that f is homeomorphism.

c.Let (X, \mathcal{T}) and (Y, \mathcal{V}) be two topological spaces. Prove that a mapping $f: X \to Y$ is continuous if the inverse image under f of every closed set in Y is closed in X.

d.Let (X, \mathcal{T}) and (Y, \mathcal{V}) be two topological spaces and $f: X \to Y$ be bijective mapping. Prove that f is homeomorphism if f is continuous and open.

[3]

3. a. Define compactness in a topological space. Show by an example 4+6 = 10that a topological space X is compact if X is finite.

[2]

Contd....

P.T.O.

3+3+4 =10

=10