MASTER OF COMPUTER APPLICATION
 FIRST SEMESTER
 FUNDAMENTAL CONCEPTS IN MATHEMATICS

MSM - 711
Duration : 3 hrs .
Full Marks: 70

(PART-A: Objective)

Time : 20 min .
Marks: 20

Choose the correct answer from the following:
$1 \times 20=20$

1. The value of $\log 1$ is equal to
a. 1
b. 0
c. 3
d. 2
2. The value of $\log _{a} a$ is equal to
a. 0
b. 1
c. -1
d. 2
3. $\log _{a} m+\log _{a} n$ is equal to
a. $\log _{a} m n$
b. $\log _{a} m$
c. $\log _{a} n$
d. 1
4. $\log _{a} m-\log _{a} n$ is equal to
a. $\log _{a} m n$
b. $\log _{a} \frac{m}{n}$
c. $\log _{a} n$
d. 1
5. $\log _{a} m^{n}$ is equal to
a. $\mathrm{n} \log _{a} m$
b. $\log _{a} \frac{m}{n}$
c. $\log _{a} n$
d. 1
6. $\log _{b} m \times \log _{a} b$ is equal to
a. $\log _{b} m$
b. $\log _{a} m$
c. 1
d. 0
7. $\log _{b} a \times \log _{a} b$ is equal to
a. 1
b. 0
c. -1
d. 2
8. $\frac{\log _{b} m}{\log _{b} a}$ is equal to
a. $\log _{a} m$
b. $\log _{b} m$
c. 0
d. None of these.
9. The value of $\log _{5} 625$ is equal to
10. The value of $(\sqrt{3})^{6}$ is equal to
a. 24
b. 36
c. 27

d. 1

(PART-B: Descriptive)

11. The value of $a^{m} \times a^{n}$ is equal to
a. a^{m+n}
b. a^{m-n}
c. 1
d. 0
12. $a^{m} \div a^{n}$ is equal to
a. a^{m+n}
b. a^{m-n}
c. 1
d. 0
13. $\left(a^{m}\right)^{n}$ is equal to
a. $a^{m n}$
b. a^{m-n}
c. 1
d. 0
14. $(a b)^{m}$ is equal to
a. $a^{m} \cdot b^{m}$
b. ab
c. 1
d. 0
15. $\left(\frac{a}{b}\right)^{m}$ is equal to
a. $a^{m} \cdot b^{m}$
b. $\frac{a^{m}}{b^{m}}$
c. 1
d. 0
16. A matrix whose each and every element is zero is known as
a. Unit matrix
b. Zero matrix
c. 1
d. None of these.
17. A matrix whose diagonal elements is equal to 1 and non-diagonal elements is equal to zero is known as
a. Unit matrix
b. Zero matrix
c. 1
d. None of these
18. A matrix whose rows and columns are equal is known as
a. Unit matrix
b. Zero matrix
c. Square matrix
d. None of these.
19. A matrix $A_{i j}$ is known as symmetric matrix if
a. $A_{i j}=-A_{j i}$
b. $A_{i j}=A_{j i}$
c. 1
d. None of these.
20. A matrix $A_{i j}$ is known as asymmetric matrix if
a. $A_{i j}=-A_{j i}$
b. $A_{i j}=A_{j i}$
d. None of these

[Answer question no. 1 \& any four (4) from the rest]

1. If $2^{x}=3^{y}=12^{z}$, show that $x y=z(x+2 y)$. Also, if $a^{x}=b^{y}=c^{z}, a b c=1, \quad 5+5=10$ then prove that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$.
2. If $x=3-3^{\frac{2}{3}}-3^{\frac{1}{3}}$, then show that $x^{3}-9 x^{2}+18 x+12=0$.
3. Show that $\frac{\left(x^{2}-\frac{1}{y^{2}}\right)^{x} \cdot\left(x-\frac{1}{y}\right)^{y-x}}{\left(y^{2}-\frac{1}{x^{2}}\right)^{y}\left(y+\frac{1}{x}\right)^{x-y}}=\left(\frac{x}{y}\right)^{x+y}$.
4. If $a=10^{x}, b=10^{y},\left(a^{y} b^{y}\right)=100$, prove that $x y z=1$.
5. Simplify $7 \log \frac{16}{15}+5 \log \frac{25}{24}+3 \log \frac{81}{80}$.
6. If $a^{2}+b^{2}=14 a b$, then prove that $\log \left\{\frac{1}{4}(a+b)\right\}=\frac{1}{2}(\log a+\log b)$
7. Prove that $\frac{1}{\log _{a} a b c}+\frac{1}{\log _{b} a b c}+\frac{1}{\log _{c} a b c}=1$.
8. Show that the matrix $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ satisfies the following matrix
