8. a. Determine which of the polynomials below are irreducible over Q? (i) $x^{2}+9 x^{4}+12 x^{2}+6$
(ii) $x^{4}+x+1$
(iii) $x^{5}+5 x^{2}+1$
b. Prove that $-x^{2}+x+4$ is irreducible over \mathbb{Z}_{11}

REV-00

M.Sc. MATHEMATICS
 FIRST SEMESTER ABSTRACT ALGEBRA-I MSM-103

(Use separate answer scripts for Objective \& Descriptive)

Duration: 3 hrs.

(PART-A: Objective)
Time: 20 min .

Choose the correct answer from the following:

1. The set $\{1,2, \cdots, n-1\}$ is a group under multiplication modulo n iff n is:
a. Composite
b. Prime
c. For any integer
d. None of these
2. The identity element of $G L(2, \mathbb{R})$ under matrix multiplication is:
a. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
c. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
b. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
3. If $G=Z(G)$ then:
a. $Z(G)$ is a subgroup of G
b. G is an Abelian group
c. G is a group but may not be Abelian
d. None of these
4. The value of $R_{270} R_{0}$ and $R_{270} D$ are:
a. $R_{270} \& V$
b. $R_{270} \& H$
c. $R_{270} \& R_{180}$
d. $R_{270} \& R_{90}$
5. Let G be group and a be an element of G such that $a^{12}=e$, then $\operatorname{ord}(a)$ is:
a. 12
b. Divisor of 12
c. ≤ 12
d. None of these
6. A generator of \mathbb{Z}_{12} is:
a. 3
b. 6
c. 5
d. 10
7. Consider the following statements:
P : The permutation $(12)(134)(152)$ is an odd permutation
Q : The symmetric group S_{7} contain an element of order 14.
a. P is true but Q is false
b. P is false and Q is true
c. P and Q both are true
d. P and Q both are false
8. The group \mathbb{Z}_{8}^{*} is:
a. Cyclic and all of its subgroups are also cyclic.
b. Non-cyclic but all of its subgroups are cyclic.
c. Cyclic and some of its subgroups are cyclic.
d. Non-cyclic but some of its subgroups are cyclic.
9. Let G and \bar{G} be a group and $\phi: G \rightarrow \bar{G}$ be a group isomorphism, then P: If H is a subgroup of G then $f(H)=\{\phi(h): h \in H]$ is a subgroup of G.
Q : If G is cyclic then G is also cyclic. But converse is not true.
a. P is true but Q is false
b. P is false and Q is true
c. P and Q both are true
d. P and Q both are false
10. Let H be a subgroup of a group G and $a, b \in G$. Then:
a. $a H=b H$ iff $a b \in H$
b. $a H=b H$ iff $a b^{-1} \in H$
c. $a H=b H$ iff $a^{-1} b \in H$
d. $a H=b H$ iff $b a \in H$
(PART-B: Descriptive
11. Consider the following statements:
P : A group of prime order is cyclic.
Q : A subgroup H of a group G is normal in G iff $x H x^{-1} \subseteq H, \forall x \in G$.
a. P is true, Q is false
b. Q is true, P is false
c. P and Q both are false
d. P and Q both are true
12. Consider the following statements:
$P:$ If $\frac{G}{Z(G)}$ is cyclic then G is cyclic.
Q : if G is finite Abelian group and p is a prime number such that $p||G|$ then Ghas an element of order p.
a. P is true, Q is false
b. P is false, Q is true
c. P and Q both are true
d. P and Q both are false
13. Consider the following statements:
$\mathbf{P}: n \mathbb{Z}$ is prime ideal of \mathbb{Z} iff n is prime
$\mathrm{Q}:<x^{2}+1>$ is a prime ideal in $\mathbb{Z}_{2}[x]$
a. P is true, Q is false
b. P is false, Q is true
c. P and Q both are true
d. P and Q both are false
14. Up to isomorphism, the number of Abelian groups of order 108 is:
a. 12
b. 9
c. 6
d. 5
15. In the group of all invertible 4×4 matrices with entries in the field of 3 elements, any 3Sylow subgroup has cardinality:
a. 3
b. 81
c. 243
d. 729
16. Consider the polynomial function $f(x)=x^{4}+1$. Which of the following is true?
a. $f(x)$ is irreducible over \mathbb{Q}
b. $f(x)$ is irreducible over \mathbb{Z}_{2}
c. $f(x)$ is irreducible over \mathbb{Z}_{3}
d. $f(x)$ is irreducible over \mathbb{Z}_{5}
17. Consider the following statements:
\mathbf{P} : Every Euclidean domain is a principal ideal domain.
Q : Every Euclidean domain is a unique factorization domain.
a. P is true, Q is false
b. P is false, Q is true
c. Both P and Q are true
d. None of these
18. The number of elements in the field $\frac{z_{2}[x]}{\left\langle x^{3}+x+1\right\rangle}$ is:
a. 9 -
b. 8
c. 6
d. None of these
19. Let G be a non-Abelian group. Then, its order can be:
a. 25
b. 55
c. 9
d. 35
20. Which of the following is class equation of a group of order 10 ?
a. $1+1+1+2+5=10$
b. $1+2+3+4=10$
c. $1+2+2+5=10$
d. $1+1+2+2+2+2=10$

$$
==* *==
$$

[Answer question no. 1 \& any four (4) from the rest]

1. Define Abelian group. Give an example of a non-Abelian group and explain.
2. a. Let G be an Abelian group with identity e and let n be some integer. Prove that the set of all elements of G that satisfy the equation $x^{n}=e$ is a subgroup of G.
b. Let $\alpha=(12)(345)$ and $\beta=(123456)$. Find the value of:
(i) α^{-1} and β^{-1}
(ii) $\alpha \beta$ and $\beta \alpha$
c. Let $\alpha \in S_{7}$ and suppose $\alpha^{4}=(2143567)$. Find α.
d. Find the number of element of order 2 in S_{5}.
3. a. Determine the number of elements of order 5 in $\mathbb{Z}_{25} \oplus \mathbb{Z}_{5}$
b. Suppose that G is a non-Abelian group of order p^{3} and $Z(G) \neq\{e\}$. Prove that $|Z(G)|=p$.
4. a. State the first Isomorphism theorem. Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and $\operatorname{Ker} \phi=\{0,10,20\}$. If $\phi(23)=9$, determine all elements that map to 9.
b. Determine which of the following cannot be the class equation of a group.
(i) $10=1+1+1+2+5$
(ii) $4=1+1+2$
(iii) $8=1+1+3+3$
(iv) $6=1+2+3$
5. a. Let R be a ring and let $A=\{x \in R: a x=x a, \forall \Omega \in R\}$. Prove that A is a $\quad 5+2+3=10$ subring of R.
b. Define Integral domain and field. Prove that - A finite integral domain is a field.
6. a. Define prime and maximal ideal.
b. Define Euclidean domain and Principal ideal domain. Prove that Every Euclidean domain is principal ideal domain.
c. Prove that - the ideal $<x^{2}+1>$ is maximal ideal in $\mathbb{R}[x]$.
7. a. Prove that - A group of order 99 is Abelian.
b. Find the order of Sylow-2 subgroup of S_{6}.
c. Let G be a group of order 45 . Prove that -
(i) G has a normal subgroup of order 5 .
(ii) G has a normal subgroup of order 9 .
