b. Is the function
$$f(x) = \begin{cases} 2x\sin\frac{1}{x} - \cos\frac{1}{x}, x \in]0,1[\\0, x = 0 \end{cases}$$
 Riemann

integrable? Evaluate the integral of *f*(*x*) on [0,1]. **c.** Is a monotonic function *f* on [*a*, *b*] Riemann integrable? Show that

$$f(x) = \begin{cases} \frac{1}{2^n}, & \text{when } \frac{1}{2^{n+2}} < x \le \frac{1}{2^n}, (n = 0, 1, 2, \dots,)\\ 0, & x = 0 \end{cases}$$
 is

monotonous on [0,1]. Find the value of $\int_0^1 f(x) dx$.

= = *** = =

4

REV-00	
MSM/32/39	

Duration: 3 hrs.

Time: 20 min.

M.Sc. MATHEMATICS FIRST SEMESTER

ANALYSIS-I

MSM-101

(Use separate answer scripts for Objective & Descriptive)

Full Marks: 70

(PART-A: Objective)

Marks: 20

Choose the correct answer from the following: $1 \times 20 = 20$ 1. The metric space (X, d) with d(x, y) = 1 for $x \neq y$ and d(x, y) = 0 for x = y is:a. Uniquea. Uniqueb. Regularc. Discreted. Euclidean

2. In the metric space (R, d) with the usual metric *d* the radius of the open sphere $S_r(a)$ is: **a**. *a* **b**. *r*

c. <i>d</i>	d. Infinite

3. In the set [0, 1] the point 1 is:
a. An isolated point
b. A limit point
c. A point in the set
d. None of these

4. The derived set of every subset *A* of a discrete metric space:
a. Contains an infinite number of points
b. Is empty
c. Is discrete
d. Is *A* itself

- 5. The Cantor set at the *n*th step is the union of *n* number of:a. Closed setsb. Open setsc. Singleton setsd. Intervals
- 6. If the closure of any subset *A* of a metric space (*X*, *d*) is given by *Ā* = *X*, then it is:
 a. Null
 b. Dense
 c. Singleton
 d. None of the above
- 7. If *A* is a dense-in-itself set a metric space (X, d) then:

a. $A \subseteq A^{/}$	b. $A = \overline{A}$
c. int $(\overline{A}) = \Phi$	d . <i>A</i> is perfect

8. A set X is a compact metric space with the metric d if:a. X is finite and d is discrete.

b. *X* is infinite and *d* is discrete.

- c. X is the set of reals and d is the usual metric.
- **d**. X =]0,1] and *d* is the usual metric.

9. The metric space (X, d) with the usual metric d and X =]0, 1] becomes complete if: **a.** d becomes discrete **b.** rational part of X is taken out **c.** '0' is adjoined to X**d.** $d(x, y) = \int_0^1 |x(t) - y(t)| dt$

10. The domain of a sequence in a metric space (*S*, *d*) with range *S* is:

a. R	b. Q
c. <i>N</i>	d. <i>S</i>

11.	Every bounded sequence in \mathbb{R}^n :			
	a. Has a convergent subsequencec. Is oscillatory	b. Covers an infinite setd. Is divergent		
12.	The subsequence {1, 1, 1, 1,}, of the sequence {1, -1, 1, -1,}			
	a. Finite c. Oscillatory	b. Divergentd. Convergent		
13.	A Cauchy sequence in a metric space (<i>X</i>, <i>d</i>)a. An arbitrary numberc. A preassigned small positive number	is defined for: b. A discrete metric d. A positive real number		
14.	In a Cauchy sequence $\{a_n\}$ of points of the n condition $d(m,n) < \varepsilon \forall m, n \ge n_0$ for each ε a. An element of <i>X</i> c. A positive integer	metric space (X, d) the metric d satisfies the >0, where n_0 is: b. An index of metric d. A real number		
15.	The radius of convergence of the power ser equal to: a. 0 ^{-next} c. ² / ₃	ies $1 + x^2 + x^4 + x^6 + \dots \dots \dots$ is b. 1 d. ∞		
16.	If $f(x) = x$ for rational values of x and $f(x)$ a. A piecewise continuous function c. Continuous at $x = 0$	= 0 for irrational values of x , then f is: b. Not defined at at $x = 0$ d. Discontinuous at $x = 0$		
17.	If (X, d_1) and (Y, d_2) are any two metric spa a. Continuous on <i>X</i> c. Has the value 0	ces, then the constant function $f: X \to Y$ is: b. Not continuous on X d. Has the value <i>Max.</i> (d_1, d_2)		
18.	In case of isometry between two metric spa- a. Into c. One-to-one	ces, the isometry is: b. Onto d. Many-one		
19.	If $f_1, f_2, \dots, \dots, \dots, f_k$ are the component at a point x is equal to: a. $\sum_{i=\partial x}^k f_k$ c. $(f'_{1,i}, f'_{2,i}, f'_{3,i}, \dots, \dots, f'_k)$	The heter that the sector valued function f then f' b. $\frac{\partial}{\partial x} \sum_{1}^{k} f_{k}$ d. $\frac{\partial}{\partial x} f(f_{1}, f_{2}, \dots, \dots, f_{k})$		
20.	In the Riemann integral of the bounded fun a. The upper integral is defined. b. The lower integral is defined. c. Both the upper and lower integrals are d d. The upper and lower integrals are unequ	iction ƒ over [a,b] : efined. ial.		
= = * * = =				

	(<u>PART-B : Descriptive</u>)	
Tin	ne : 2 hrs. 40 min.	Marks: 50
	[Answer question no.1 & any four (4) from the rest]	
1.	 a. If (X, d) be a metric space, then show that the mapping ρ: X × X → R defined by ρ(x, y) = d(x,y)/(1+d(x,y)) ∀ x, y ∈ X is a metric on X. b. Show that d and ρ are equivalent metrics in the above metric space(X, d). 	5+5=10
2.	 a. Define limit point, isolated point and derived set of a subset <i>A</i> of the metric space (<i>X</i>, <i>d</i>). Does the set of integers <i>I</i> possess a limit point? b. Explain the terms open sphere, closed sphere and neighbourhood of a point <i>a</i> ∈ <i>X</i> of the metric space (<i>X</i>, <i>d</i>). 	4+6=10 a
3.	 a. Construct the Cantor set by considering ternary operation to the 8th stage. b. Show that the Cantor set is a perfect set. 	4+6=10
4.	 a. Prove that the closure Ā of any subset A of a metric space (X, d) is a closed set. b. Show that: (i) {(-1)ⁿ⁻¹/n!}, n ∈ N, converges to zero (ii) {n(-1)ⁿ}, n ∈ N, oscillates infinitely. c. Define subsequence of a sequence {S_n}, n ∈ N. Give example to show that a bounded sequence contains a convergent subsequence. 	4+3+3=10
5.	a. Prove that every closed subset of a compact metric space is compact.b. Prove that a metric space (<i>X</i>, <i>d</i>) is sequentially compact if and only if it has the Bolzano-Weierstrass property.	4+6=10
6.	 a. Show that the space C[0,1] of all continuous bounded real-valued functions defined on the closed interval [0,1] with the metric d(f, g) = max { f(x) - g(x) : 0 ≤ x ≤ 1} is complete. b. State and prove D' Alemberts Ratio test for convergence of series of positive terms. 	4+6=10
7.	 a. Define homeomorphism and isometry between two metric spaces. Prove that isometric metric spaces are homeomorphic. b. Prove that any contraction mapping <i>f</i> of a non-empty complete metric space (<i>X</i>, <i>d</i>) into itself has a unique fixed point. 	5+5=10
8.	a. State the Fundamental Theorem of Calculus for a bounded and integrable function f on $[a, b]$.	3+3+4=10
		rio

.