M.Sc. ELECTRONICS FOURTH SEMESTER OPTOELECTRONICS AND SIGNAL & SYSTEMS MSE-402 (Use separate answer scripts for Objective & Descriptive) | Duration: 3 hrs. | Full Marks: 7 | |---|--| | (PART-A: O | bjective) | | Time: 20 min. | Marks: 2 | | Choose the correct answer from the follo | owing: 1x20=20 | | A periodic signal x(n) of period N₁ is added
Then the period of the resulting signal is alw
a. N₁+N₂ c. LCM of N₁ and N₂ | to another periodic signal of period N ₂ . | | 2. The area under a impulse function $\partial(t)$ is:
a. Infinity
c. 0 | b. Unity
d. Undefined | | 3. Which among the following is a key process undergoes the light amplification?a. Spontaneous emissionc. Both a and b | adopted for the laser beam formation as itb. Stimulated emissiond. None of these | | 4. The z-transform of x(n)=[4(2)n]u(n) is: a. 4/(1-2z⁻¹) c. 4/(1-z⁻¹) | b. 4/(1+2z ⁻¹)
d. 1/(1-2z ⁻¹) | | 5. The system y(n)=x(3t-6) is: a. Anti-Causal and time invariant c. Causal and invariant | b. Causal and time invariant d. Anti-Causal and invariant | | 6. Given x(n) =a n , a<1 is a. An energy signal c. Neither energy nor power signal | b. Power signald. Energy as well as power signal | | 7. To obtain x(4-2n) from the given signal x(n), is used for operations on the independent va. a. Time scaling-> time shifting-> reflection. b. Reflection -> time shifting-> time scaling. c. Time scaling-> reflection-> time shifting. d. Time shifting-> time scaling-> reflection. | ariable n: | | 8. DTFT is periodic with period:a. ∏c. ∏/2 | b. 2∏
d. ∏/4 | | 9. For a system with input x(n)=∂(n-1) and impa. ∂(n) c. ∂(n+1) | bulse response $h(n) = \partial(n+1)$, the output is:
b. $\partial(n-1)$
d. $\partial(n+2)$ | 10. Convolution of two odd functions is function. a. A odd b. An even c. Complex d. real 11. Periodic signals are: a. X(t+T)=x(t)b. X(t-T)=x(t)c. X(n=mN)=x(n)d. All of the above 12. Any signal x(t) can be represented as: a. $X_o(t) + X_o(t)$ b. $X_e(t)-X_o(t)$ c. $X_e(t)*X_o(t)$ d. $X_e(t)/X_o(t)$ 13. Given a unit step function u(t). Its time derivative is: b. Another step function a. A unit impulse c. A unit ramp function d. A sine function 14. Using frequency shifting property $F[x(t)e^{j\Omega t}]$ is equal to: a. $X[j(\Omega-\Omega_0)]$ b. $X[j(-\Omega_o)]$ c. $X[j(\Omega + \Omega_o)]$ d. $X[j(\Omega_o)]$ 15. If x(t) is even then $X(j\Omega)$: b. Imaginary and odd a. Imaginary and even c. Real and even d. Real and odd 16. The inverse Fourier Transform of $F(j\Omega) = (1/j\Omega) + \prod \partial(\Omega)$: b. $\cos\Omega t$ a. $sin\Omega t$ c. Sgn(t) d. u(t) 17. The DFT of $x^*(n)$ is: b. X*(-k) a. X*(k) c. X*(N-k) d. X*(N+k) 18. The Laplace Transform of tu(t): $b.1/s^2$ a. 1/s $d.1/s^3$ c. $2/s^2$ 19. The DFT of the sequence $x(n)=\partial(n-n_0)$ is: b. ej2∏kn_o d. $e(j2\Pi kn_o/N)$ c. $e-(j2\Pi kn_o/N)$ 20. The z-transform of u(n): b. 1 a. 1/1-z-1 d. z-1-1 c. 1/z-1-1 -- --- ## PART-B: Descriptive | Time: 2 hrs. 40 min. | | Marks: 50 | |----------------------|--|-----------| | | [Answer question no.1 & any four (4) from the rest] | | | 1. | Check whether or not the system is linear, time invariant, causal, memory less or stable. Y(t)= x(t-2) + x(2-t) | | | 2. | a. Name and explain three conditions necessary for lasing action.b. How does spontaneous emission occur? | 5+5=10 | | 3. | a. What is the difference between a surface emitting LED and edge emitting LED?b. Name the techniques of coupling light from an LED into an optical fiber with suitable diagram. | 4+6=10 | | 4. | a. Find whether the following signals are periodic or not. (i) cos (∏n) (ii) e^{j2}∏/³ⁿ+ e^{j3}∏/⁴ⁿ (iii) e^{j6}∏n b. Find the even and odd components of the following signals (i) {-2,1,2,-1,3} (ii) cost + sint+ costsint | 6+4=10 | | 5. | a. Find the linear and circular convolution of the sequences: $x_1(n)=\{1,-1,2,3\}$ and $x_2(n)=\{1,-2,3,-1\}$ b. Find the Fourier transform of the following: (i) $x(n)=a^nu(n)$ (ii) $x(n)=\partial(n+2)-\partial(n-2)$ | 5+5=10 | | 6. | a. Find the Fourier transform and sketch the magnitude and phase spectrum. x(t)= e^{2t}u(t) b. Explain the condition required for existence of Fourier transform. | 8+2=10 | | 7. | a. Find IDFT of the sequence. N=4(given) $X(k) = \{8,2-j,3,2+j\}$ | 10 | | 8. | a. Find the Z-transform of $x(n)=(0.5)^n$ $u(n)+(0.33)^n$ $u(n)$.
b. Obtain the direct form II realization of the following sequence: $y(n)=-0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2)$ | 5+5=10 | == *** ==