Time: 2 hrs. 40 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1. A bag contains 8 white and 6 red balls. Find the probability of drawing 2 red balls of the same colour.

A bag contains 5 red and 10 black balls. Now eight of these balls are placed in another bag. What is the probability that the new ball contains 2 Red and 6lack balls?

- 5+5=10 2. Find the Laplace transform of $t^2e^{-t}cost$ and $\frac{1-e^{-t}}{t}$.
- 3. Prove that the area of the triangle whose vertices are A, B, C is 5+5=10 $\frac{1}{2}[B \times C + C \times A + A \times B]$

Also, calculate the area of the triangle whose vertices are A(1,0,-1), B(2,1,5) and C(0,1,2).

4. Find the Fourier transform of f(x) = 1, |x| < 16+4=10 =0, |x| > 1

Also evaluate $\int_0^\infty \frac{\sin s}{s} ds$.

P(B/A), P(AUB) and P(A/B').

- 5. Let F(t) have period T>0 so hat F(t+T)=F(t), then 5+5=10 $L\{f(t)\}=\frac{\int_0^\infty e^{-st}F(t)dt}{1-e^{-st}}$. Show that $L\{sinat - at cosat\} = \frac{2u^2}{(s^2 + a^2)}$
- 6. If A=4I+3I+K, B=2I+3I+K, B=2I-I+2K, find a unit vector N perpendicular to vectors A and B such that A, B, N form a right handed system. Also, find the angle between the vectors A and B.
- 5+5=10 7. Find the Z transform of: and $3n - 4\sin\frac{n\pi}{4} + 5x$ sin(3n+5)
- 8. A pair of dice is tossed twice. Find the probability of scoring 7 points 2+2+2+1+1+1+1=10 once, atleast once, twice. Also, given P(A)=1/4, P(B)=1/3, and P(AUB)=1/2, evaluate P(A/B),

= = *** = =

M.Sc. ELECTRONICS FIRST SEMESTER APPLIED MATHEMATICS MSE-101

(Use separate answer scripts for Objective & Descriptive)

Duration: 3 hrs. Full Marks: 70

PART-A: Objective

Time: 20 min. Marks: 20

Choose the correct answer from the following:

1x20=20

- 1. The Laplace transform of t^n is:

5+5=10

5+5=10

c. n!

- d. None of them
- 2. The Z transform of n^p , p being a positive integer:
 - a. $-z\frac{d}{dz}Z(n^{p-1})$ b. $z\frac{d}{dz}Z(n^{p+1})$

- 3. If $Z(u_n) = U(z)$, then we have:
 - a. $Z(a^{-n}u_n) = U(az)$ b. $Z(a^{-n}u_n) = U(1)$
 - $c. Z(a^{-n}u_n) = U(z/a)$
- $d.Z(a^{-n}u_n) = U(a)$
- 4. The Laplace Transform of sin(at) is:
 - a. 1

b. $\frac{\alpha}{s^2 + a^2}$

c. $\frac{5}{5^2 + a^2}$

- 5. The value of n_{p_r} is:

b. ner!

- d. None of these
- 6. The number of permutations of all the letters of the word ENGINEERING:
 - a. 36250
- b. 277200
- c. 297840
- d. 7666340
- 7. The mean and standard deviation of a binomial distribution is:
 - a. n p and npq
- b. np and npq d. None of these
- c. np and Inpa 8. The inverse Laplace transform of

b. 0

- c. 2
- d. None of these

9. The integral transform of a function f(x) denoted by I[f(x)], is defined by:

a.
$$\overline{f(s)} = \int_{x_s}^{x_2} f(x)K(s, x)dx$$

$$b. f(s) = 1$$

c.
$$\overline{f(s)} = -\int_{x_s}^{x_z} f(x)K(s,x)dx$$

d. None of these

10. The Z transform of $(n+1)^2$ is:

a.
$$\frac{Z}{Z-1}$$

$$\frac{z^2(2Z+1)}{(z-1)^3}$$

c.
$$\frac{z^2(2Z)}{(z-1)^2}$$

$$(z-1)^2$$

11. If $r = \sin t \ i + \cos t \ j + tk$, then $\frac{dr}{dt}$ is:

a.
$$\sqrt{3}$$

c.
$$\sqrt{2}$$

12. If f and g are two scalar point function, then $f \Delta g + g \Delta f$ is:

a.
$$\nabla$$
. (fg)

b.
$$\nabla \times (fg)$$

d.
$$f \Delta g$$

13. A vector V is said to be solenoidal:

a. Div
$$V=1$$

c.
$$curl v = 1$$

14. A vector f is said to be irrotational if:

a.
$$\nabla f = 0$$

b.
$$\nabla \times f = 0$$

$$\mathbf{c} \cdot \nabla f = 0$$

d. None of these

15. Suppose V is the volume bounded by a closed piecewise smooth surface S. Suppose F(x, y, z) is a vector function of position which is continuous and has continuous

first partial derivatives in V. Then, $\iiint_{\mathcal{V}} \nabla \cdot F dv = \iint_{\mathcal{V}} F \cdot n ds$ where n is the outward drawn unit normal vector to S is:

a. Green's Theorem

b. Divergence theorem of Gauss

c. Hermite's formula

d. Gradient

16. The value of Z(1) is:

a.
$$\frac{Z}{Z-1}$$

b.
$$\frac{Z}{Z-2}$$

c. Z

d. None of these

17. A function F(x) in Fourier series is even if:

a.
$$\int_{-l}^{l} F(x) dx = 0$$
 b. $\int_{-l}^{l} F(x) dx = 2$ c. $\int_{-l}^{l} F(x) dx = \int_{0}^{l} F(x) dx$ d. $\int_{-l}^{l} F(x) dx = 2 \int_{0}^{l} F(x) dx$

18. The function F(x) is called the inverse Fourier sine transform of $f_{\sigma}(s)$ i. e

$$F(x) = F_s^{-1}\{f_s(s)\} \text{ is equal to:}$$
a. $\frac{2}{\pi} \int_{s}^{\alpha} f_s(s) \sin sx ds$

a.
$$\frac{2}{\pi} \int_0^{\alpha} f_s(s) \sin sx ds$$
 b. $\frac{\pi}{2} \int_0^{\alpha} f_s(s) \sin sx ds$

c.
$$\int_{0}^{\alpha} f_{s}(s) \sin sx ds$$

d. None of these

19. The relation between Fourier and Laplace transform is:

a.
$$F(t) = L^{-1}\{\varphi(t)\}$$

b.
$$L\{\varphi(t)\} = F^{-1}\{F(t)\}$$

c.
$$F\{F(t)\} = L\{\varphi(t)\}$$

$$d. \varphi(t) = L$$

20. The distribution function F(x) of the discrete variate X is defined by:

a.
$$F(x) = \sum_{i=1}^{x} p(x_i)$$

b.
$$F(x) = 0$$

c.
$$F(x) = 1$$

d. None of these

==***==