M.Sc. ELECTRONICS
 FIRST SEMESTER APPLIED MATHEMATICS

MSE-101

(Use separate answer scripts for Objective \& Descriptive)
Duration : 3 hrs.
(PART-A: Objective $)$
Time : 20 min .

Choose the correct answer from the following:

1. The Laplace transform of $t^{n 2}$ is:
a. $\frac{n}{s}$
b. $\frac{n!}{5 n+1}$
c. $\frac{n!}{5^{n-1}}$
d. None of them
2. The Z transform of n^{p}, p being a positive integer:
a. $-z \frac{d}{d z} Z\left(n^{p-1}\right)$
b. $z \frac{d}{d z} Z\left(n^{n+1}\right)$
c. z
d. $n p$
3. If $Z\left(u_{n}\right)=U(z)$, then we have:
a. $Z\left(a^{-n} u_{n}\right)=U(a z)$
b. $Z\left(a^{-n} u_{n}\right)=U(1)$
c. $Z\left(a^{-n} u_{n}\right)=U(z / a)$
d. $Z\left(a^{-n} u_{n}\right)-U(a)$
4. The Laplace Transform of $\sin (a t)$ is: a. 1
b. $\frac{a}{s^{2}+a^{2}}$
d. 0
5. If $A=4 I+3 J+K, B=2 I+3 J+K, B=2 I-J+2 K$, find a unit vector N perpendicular to vectors A and B such that A, B, N form a right handed system. Also, find the angle between the vectors A and B.
6. Find the Z transform of:

$$
\sin (3 n+5) \quad \text { and } \quad 3 n-4 \sin \frac{n \pi}{4}+5 x
$$

8. A pair of dice is tossed twice. Find the probability of scoring 7 points once, atleast once, twice.
Also, given $P(A)=1 / 4, P(B)=1 / 3$, and $P(A U B)=1 / 2$, evaluate $P(A / B)$, $P(B / A), P(A U B)$ and $P\left(A / B^{\prime}\right)$.

$$
==* * *==
$$

$2+2+2+1+1+1+1=10$
6. The number of permutations of all the letters of the word ENGINEERING:
a. 36250
b. 277200
c. 297840
d. 7666340
7. The mean and standard deviation of a binomial distribution is:
a. $n-p$ and $n p q$
b. $n p$ and $n p q$
c. np and $\sqrt{n p q}$
d. None of these
8. The inverse Laplace transform of 1
\bar{s}
b. 0
c. 2
d. None of these
9. The integral transform of a function $f(x)$ denoted by $I[f(x)]$, is defined by:
a. $\overline{f(s)}=\int_{x_{1}}^{x_{2}} f(x) K(s, x) d x$
b. $f(s)=1$
c. $\overline{f(s)}=-\int_{x_{1}}^{x z} f(x) K(s, x) d x$
d. None of these
10. The Z transform of $(n+1)^{2}$ is:
a. $\frac{Z}{Z-1}$
b. $\frac{z^{2}(2.7+1)}{(z-1)^{3}}$
d. z
c. $\frac{z^{2}(2 Z)}{(z-1)^{2}}$
11. If $r=\sin t i+\cos t j+t k$, then $\left|\frac{d r}{d t}\right|$ is:
a. $\sqrt{3}$
b. 4
c. $\sqrt{2}$
d. 1
12. If f and g are two scalar point function, then $f \Delta g+g \Delta f$ is:
a. $\nabla \cdot(f g)$
b. $\nabla \times(f g)$
c. $\nabla(f g)$
d. $f \Delta g$
13. A vector V is said to be solenoidal:
a. $\operatorname{Div} V=1$
b. curl $V=0$
c. $\operatorname{curl} \mathrm{v}=1$
d. $\operatorname{div} V=0$
14. A vector f is said to be irrotational if:
a. $\nabla . f=0$
b. $\nabla \times f=0$
c. $\nabla f=0$
d. None of these
15. Suppose V is the volume bounded by a closed piecewise smooth surface S . Suppose $F(x, y, z)$ is a vector function of position which is continuous and has continuous first partial derivatives in V. Then, $\iiint_{V} \nabla . F d \nu=\iint_{s} F . n d s$ where n is the outward drawn unit normal vector to S is:
a. Green's Theorem
b. Divergence theorem of Gauss
c. Hermite's formula
d. Gradient
16. The value of $Z(1)$ is:

$$
\text { a. } \frac{Z}{Z-1}
$$

b. $\frac{Z}{Z-2}$
c. Z
d. None of these
17. A function $\mathrm{F}(\mathrm{x})$ in Fourier series is even if:
a. $\int_{-l}^{l} F(x) d x=0$
b. $\int_{-l}^{l} F(x) d x=2$
c. $\int_{-1}^{l} F(x) d x=\int_{0}^{l} F(x) d x$
d. $\int_{-1}^{1} F(x) d x=2 \int_{0}^{l} F(x) d x$
18. The function $\mathrm{F}(\mathrm{x})$ is called the inverse Fourier sine transform of $f_{s}(s)$ i. e $F(x)=F_{s}^{-1}\left\{f_{s}(s)\right\}$ is equal to:
a. $\frac{2}{\pi} \int_{0}^{\infty} f_{s}(s) \sin \operatorname{sid} d s$
b. $\frac{\pi}{2} \int_{a}^{a} f_{s}(s) \sin s x d s$
c. $\int_{0}^{a} f_{s}(s) \sin s x d s$
d. None of these
19. The relation between Fourier and Laplace transform is:
a. $F(t)=L^{-1}\{\varphi(t)\}$
b. $L\{\varphi(t)\}=F^{-1}\{F(t)$
c. $F\{F(t)\}=L\{\varphi(t)\}$
d. $\varphi(t)=L$
20. The distribution function $\mathrm{F}(\mathrm{x})$ of the discrete variate X is defined by:
a. $F(x)-\sum_{i=1}^{x} P\left(x_{i}\right)$
b. $F(x)=0$
c. $F(x)=1$
d. None of these

