REV-00 MSC/102/107

M.Sc. CHEMISTRY FOURTH SEMESTER SPECTROSCOPY-III MSC-401

(Use separate answer scripts for Objective & Descriptive)

Duration : 3 hrs.

-	0			
PART-A	• ()	hie	etive	
I ANI-F		NIC	CUYC	

Time: 20 min.

Choose the correct answer from the following: 1. The asymmetric stretching of CO₂ molecule is: a. IR active but Raman inactive b. IR inactive and Raman active c. both IR and Raman active d. both IR and Raman inactive 2. The intensity of NMR splitting pattern of a single magnetic nucleus with two near by equivalent protons is: a. 1:2:1 b. 2:1:2 c. 1:1:1 d. 1:4:1 3. As per Beer-Lambert Law, relation among absorbance(A), the molar absorption $coefficient(\epsilon)$ and transmittance(T) is: **b.** $A = \varepsilon Cl = T$ a. $A = \varepsilon Cl = -\log T$ c. A = $\epsilon C/l = 1/T$ **d**. $A = \epsilon l = c \log T$ l =thickness of the sample 4. UF₆ molecule is a/an: a. spherical top molecule b. asymmetric top molecule c. prolate top molecule d. oblate top molecule 5. Radiation of frequency 10^{14} Hz is a/an: a. visible radiation b. microwave radiation c. x-ray radiation d. radio frequency radiation 6. The spectroscopic technique by which the ground state dissociation energies of a diatomic molecule can be estimated is: a. infra red spectroscopy b. microwave spectroscopy d. X-ray spectroscopy c. UV-visible absorption spectroscopy 7. Which of the following molecule exhibit rotational spectra? b. CO c. N2 d. CO2 a. H2 8. The microwave spectrum of a molecule yields three rotational constants. The molecule is a/an: a. prolate symmetric top b. asymmetrical top d. oblate symmetric top c. spherical top 9. The number of vibrational spectral lines common in both IR and Raman spectra for CO_2 is: a. 1 b. Zero c. 2 d. 3 10. What is the x axis of a mass spectrum? a. mass b. mass/charge d. mass/energy c. charge

Marks : 20

Full Marks: 70

(<u>IARI-D. Descriptive</u>)	
me : 2 hrs. 40 min.	Marks: 50
[Answer question no.1 & any four (4) from the rest]	
 a) Discuss the characteristic vibrational frequencies of alkanes. b) What will be the characteristic vibrational frequency in wave number unit of C-C bond having force constant 5.0×10⁵ dynes per centimeter? c) Calculate the total number of modes of vibration in allyl bromide, CH₂=CHCH₂Br 	5+3+2=10
 a) Explain why the frequency of C=0 is higher in γ lactum as compared to δ lactum. b) Discuss with examples the different types of bending vibrations. 	5+5=10
 a) Suggest the method to distinguish primary, secondary and tertiary alcohols from their mass spectra. b) In the mass spectrum of a compound peaks for m/e values at 88, 70, 55, 42 was found. Identify the compound with proper explanation. 	5+5=10
 a) On the basis of Dirac Vector model explain the phenomenon of spin-spin coupling. b) What do you mean by first order and non-first order spectrum in NMR 	5 3+2=5
 a) Predict and explain the proton NMR and ¹³_C NMR spectra of pentanoic acid. b) Discuss the advantages and disadvantages of ¹³_C NMR over proton NM 	5+5=10 R.
 a) What do you mean by DEPT technique? Discuss the DEPT spectra of Isopentyl acetate and compare it with the decoupled ¹³C spectrum. b) Discuss the effect of deuteration in simplification of complex NMR spectra. 	2+3+2=7 3
A compound with molecular weight 116 gives the following spectral information's. i) UV : 283 mµ ϵ_{max} 22 ii) IR : 3000-2500 (b), 1715 (s), 1342 (w) [in cm ⁻¹] iii) NMR : 7.88 γ singlet (3H), 7.40 γ triplet (2H) 7.75 γ triplet (2H) and -1.1 γ singlet (1H) Find the structural formula of the compound.	10
 a) What do you mean by shift reagent? Discuss the chemical properties of shift reagent. Mention some applications of it. b) What is a 90° pube? Discuss the working principle of F.T. NMR spectroscopy. What do you mean by FID? 	2+2+1=5 1+3+1=5

(PART-R · Descriptive)