REV-00 MSC/99/104

M.Sc. CHEMISTRY **THIRD SEMESTER INORGANIC CHEMISTRY-III**

MSC-302

(Use separate answer scripts for Objective & Descriptive)

2018/12

Du	ration: 3 hrs.				Full Marks: 70							
(<u>PART-A : Objective</u>)												
Time : 20 min.												
Ch	oose the correct a	1×20=20										
1.	Alkyl Boranes are:											
	a. Monomeric and											
 b.Polymeric and not hydrolysed by water. c. Monomeric and hydrolysed by water. 												
	d. Polymeric and h											
2.	Organo-mercuric o	compounds are:										
	a. Photochemically and thermally unstable.											
	b. Photochemically and thermally stable.c. Photochemically stable but thermally unstable.											
	d. Photochemicall											
3.	In the gas phase B	e(CH ₃) ₂ is		but in solid it is								
	a. Monomeric, mo	onomeric		b. Monomeric, polymeric								
	c. Polymeric, mon	omeric		d. Polymeric, polymeric								
4.												
	a. One b. Two c. Three d. Four											
5.	$Co(CO)_3$ is isolobal	with:		b. Ni(C ₅ H ₅)								
	a. CH ₂ c. Fe(CO) ₃			d. $Co(C_5H_5)$								
6.	Asymmetric Hydrogenation of alkenes contains ligands with											
	havingsyn											
	a. 1, C ₂ -axis			b. 2, C ₂ -axis								
	c. 1, C ₃ -axis			d. 2, C ₃ -axis								
7.	Bonding in Ferrocene involvessigma,pi anddelta number of bonds											
	respectively. a. 2, 4 and 2			b. 2, 2 and 4								
	c. 1, 4 and 2			d. 4, 2 and 1								
8.	is maximum at:											
	a. 6.8 b. 2	7.0 c. 7	7.2	d. 7.4								
9.	concentration											
	gradient (osmotic a. Zn ²⁺ and Mg ²⁺	balance) in cells a	are:	b. Ca ²⁺ and Mg ²⁺								
	c Nat and Kt			d Cu ²⁺ and Fo ³⁺								

10.	Which group is bound to the meta a. Cyanide c. Adenosyl	l ion in coenzyme B b. Methyl d. Hydroxyl	b. Methyl		(<u>PART-B:Descriptive</u>)	
11.	Iron-sulphur clusters in biological systems are involved in:a. Proton transferb. Electron transferc. Group transferd. Atom transfer		Tin	ne: 2 hrs. 40min. [Answer question no.1 & any four (4) from the rest]	Marks: 50	
	The packing fraction of a simple ca: 0.76b. 0.52	c. 0.94	c. 0.94 d. 0.45		 a) Discuss the toxicity of methyl mercury compounds. b) Discuss the role of zinc and manganese in human body. c) Write the difference between two electron transfer reactions. 	4+4+2=10
13.	The lattice parameter of an element atomic radius of the element? a. 1.43 Å b. 5.72 Å	nt stabilized in a fcc c. 4.29 Å	structure is 4.04 A. What is the d. 2.86 Å	2.	a) Discuss the synthesis and applications of Polysiloxanes or silicones.b) Elaborate the structure of (LiCH₃)_{4.}	5+5=10
14.	A compound of A and B atoms forms a cubic unit cell. A atoms are at the corners and body centre position and B atoms are at the face centre positions of the cube. The molecular formula of the compound is:			3.	Explain the synthesis, reactivity and structure of Metal-Carbene complexes.	10
15.	a. AB b. AB ₂ A true statement about base hydr	c. A_3B_2	d. A ₂ B ₃	4.	a) Explain the structure of Metal-Olefin complexes. What factors affect the π-back bonding in Metal-olefin complexes?b) Discuss the Monsanto Process of preparation of acetic acid.	5+5=10
	 a. It is first order kinetics. b. The rate determining steps involves the dissociation of chloride in [Co(NH₃)₄(NH₂)Cl]⁺ c. The rate is independent of the concentration of the base. 				Discuss the conformational changes in the <i>oxy</i> and <i>deoxy</i> forms of hemoglobin. What is the significance of the Bohr effect in hemoglobin? What are cytochromes? Discuss the structure of cytochrome c.	3+2+1+4=10
16.	d. The rate determining steps involves the abstraction of proton from [Co(NH ₃) ₅ Cl] ²⁺ . The reaction of Ni(CO) ₄ with the ligand L (L=PMe ₃) yields Ni(CO) ₃ L .The reaction is: a. Associative b. Dissociative c. Interchange(Ia) d. Interchange(Id)			6.	How is the corrin ring different from the porphyrin ring? What does the deficiency of vitamin B_{12} cause? How does nitrogenase enzyme fix atmospheric nitrogen? What are the photosystems present in the process of photosynthesis?	2+1+5+2=10
17.	Aqueous Cr ²⁺ effects one electron reduction of [Co(NH ₃) ₅ Cl] ²⁺ giving compounds Y. Compound Y undergoes rapid hydrolysis. Y is:			7.	Calculate the packing efficiency in bcc and fcc lattices. What are the different types of stoichiometric defects in solids?	5+5=10
	a. [Co(NH ₃) ₅] ²⁺ c. [Co(NH ₃) ₄ (OH) ₂] ²⁺	b. [Co(NH ₃) ₅ (OH)] ⁺		8.	Explain the mechanism of Acid hydrolysis reaction and Base hydrolysis reaction.	5+5=10
18.	 The mechanism of the reaction between [Fe(CN)₆]⁴⁻ and [Fe(bpy)₃]³⁺ is: a. Outer-sphere electron transfer. b. Inner-sphere electron transfer. c. Self-exchange reaction. d. Ligand exchange followed by electron transfer. 				= = *** = =	
19.	Number of rotational symmetry a a. 4 b. 3	exes for triclinic crys c. 1	tal system is: d. 0			
20.	The value of d ₁₁₁ in cubic crystal i a. 325.6pm b. 976.8pm	s 325.6 pm. The valu c. 108.5pm	ie of d ₃₃₃ is: d. 625.6pm			
		= = * * = =				
	an a					