REV-00 MSC/99/112

M.Sc. CHEMISTRY SECOND SEMESTER SPECTROSCOPY-I

MSC-201

(Use Separate Answer Scripts for Objective & Descriptive)

!+1	Duration : 3 hrs.	inplator objective & Descriptive,	Full Marks: 70
=5	(PART-	A : Objective	
5	Time : 20 min.		Marks : 20
	Choose the correct answer from the	following:	1×20=20
+2	1. The nucleus which does not exhibit N	MR spectra is	
=7	a. 18 _O c. 14 _N	b. ¹¹ B d. ¹⁹ F	
	2. The frequency of first hot band is give	n by	
3	a. Öe (1-4xe)	b. @e (1-2xe)	
	c. 2@e(1-2xe)	d. 2GDe (1-3xe)	
	3. The nucleus which has spin $3/2$ is		
10	a. 35 _{cl} b. 29 _{si}	c. 14 N	d. 15 _N
=10	4. Larmor frequency is given by		
	a. Bz µ	b. <i>I Bz</i>	
	$\overline{2\pi I}$	$\overline{2\pi h}$	
	c. ħ Bz	d. I Bz	
	$\frac{1}{2\pi I}$	$\overline{2\pi \mu}$	
	5. The intensity of NMP seestral line is p	roportional to	
	a. R ²	b. B.	
	c 1	d p-1	
	E_{0}^{2}	$B_0 = Magnetic fields$	eld]
	6. The separation of stokes lines in the ro a. 4 B b.8 B c. 4	tational Raman spectrum of O ₂ 5 B d. 10 B	molecule is
	7. Molecule which does not exhibit rotati	onal Raman spectra is	
	a. SO ₂ b. CH ₄	c. BF ₃ d	. C ₂ H ₂
	8. The degeneracy of rotational energy le	vel is	
	a. J(J+1)	b. (2J+1)	
	c. J ² (J+1) ²	d. $\sqrt{J(J+1)}$	
	9. If a molecule has three different rotation	onal constants the molecule is a	
	a. Spherical top	b. Asymmetric top	
	c. Prolate	d. Oblate	

	a.	Write down the rotational energy of a symmetric top molecule and deduce the frequency of transition. State the selection rule.	2+2+1 =5			
	b.	Explain the symmetry property of rotational energy levels of a diatomic molecule and the effect of nuclear spin on it.	5			
•	a.	Explain what do you mean by spin –spin coupling. Discuss the high resolution NMR spectra of dry and pure ethanol. What change in the spectrum will be observed if some acid is added to ethanol?				
	b.	Calculate the magnetic field in a 300 MHz proton NMR spectrometer. Given that (β_N = 5.05×10-27 JT^-1 , g= 5.585 and h= 6.63×10-34 JT^-1	3			
	Write short notes on: 2>					
	a.	Anistropic polarizability.				
	b.	Doppler effect and its impact on spectral line.				
		==*** ==				

[4]

P.T.O.

10. IR inactive molecule is a. CO	b. O ₂	c. H2O	d. NH ₃					
11. For the molecule CH ₃ F a. I _A =I _B =I _C	b. I _A ≠I _B ≠I _C	c. I _B =I _C >I _A	d. $I_B = I_C < I_A$					
12. The first line of rotation antistokes shift of 12cm a. 18cm⁻¹	nal Raman spectra of n ⁻¹ . The antistokes sh b. 24cm ⁻¹	a diatomic molecule ift of the second line c. 20cm ⁻¹	appear with a is d. 30cm ⁻¹	• Time	: 2 hrs. 40 min.	PART-B : Descriptive)	Ma	arks : 50
13. The distance between t a. 10B	he first rotational spe b. 6B	ectral line in P branch c. 4B	and that of R branch is d. 8B		[Answer qu	uestion no.1 & any four (4) from t	the rest]	
 14. The intensity distributi molecule (I₂) shows that a. r_é≈ r_{e"} 15. If B' < B" the band head a. P branch on the high point of the band head a. P branch on the high point of the band head back as a provide the back as a providet the back as a providet the back as a providet the back as a	on of vibrational ban at b. r _é > r _{″e} d appear in h wave number side	the band origin	itions of Iodine d. r _é <r<sub>e"</r<sub>	1. [n o p I a	Draw the potential ener nolecule treating it as an of harmonic oscillator mo potential used in anharm Deduce the frequency of and first hot band starting	rgy versus displacement curve a anharmonic oscillator. What odel of a diatomic molecule? M nonic oscillator model of a dial fundamental, first overtone, s g from the energy of harmcnic o	e of a diatomic is the weakness Write down the tomic molecule. second overtone oscillator.	2+2+1+
 b. P branch on the low c. R branch on the hig d. R branch on thee lo 16. The width of the visible 	v wave number side (h wave number side) w wave number side e and ultraviolet spec	of the band origin of the band origin of the band origin ctra line is due to		2.	a. Write the rotation Show the difference spectrum of a non- selection rule for	onal energy of a non rigid diat erence of rotational energy on rigid molecule from the rigi	tomic molecule. and rotational d one. State the	2+1+1+ 1=5
 a. Natural broadening c. Heisenberg Uncerta 17. Rotational constants of Raman spectrometer is cm⁻¹) of ¹⁴N₂ is a. 20479 b. 	g ainty Principle 14 _{N2} is 2 cm ⁻¹ . If the 20487 cm ⁻¹ . The way 20495	 b. Doppler broader d. Collision broader wave number of incide ve number of first sca c. 20499 	ning ning dent radiation in a ttered stokes line (in d. 20475		 b. Rotational spec separated by a d the molecule. c. Discuss the effe diatomic molecul 	tral lines of a diatomic mol listance 20.8 cm ⁻¹ . Calculate the ect of isotope on the rotationa ile.	lecule (HCl) is bond length of l spectra of the	:
18. The set of allowed elect A. ${}^{4}\Sigma \rightarrow {}^{2}\Pi$, B. ${}^{3}\Sigma \rightarrow$ a. A,B,E b.	tronic transitions am ${}^{3}\Pi, C, {}^{1}\Delta \rightarrow {}^{1}\Delta, D, {}^{1}\Delta$. A,C,E	ong the following $^{2}\Pi \rightarrow ^{2}\Pi, E. ^{3}\Sigma \rightarrow ^{3}\Delta$ c. C,D,E	d. B,C,D	3.	a. Discuss the prin the condition of	ciple of proton NMR spectrosco resonance.	opy and deduce	4+1=
19. The wave number of ro cm ⁻¹ . The wave numbe	otational transition of er for the transition fr	f diatomic molecule A om J=3 to J=4 state w	AB from J=O to J=1 is 5 rould be		b. Define chemical as an example.	shift and explain the origin of i	t taking CH₃oH	1+4=5
c. 15 cm ⁻¹	hudroon (10 anu)	d. 20 cm ⁻¹		4.	a. Calculate the free spectral lines in the	equencies of P, Q and R branch vibrational transition stating its	nes of rotational selection rules.	5
Iodine (127 amu) the ra a. 1	nydrogen (1.0 amu) atio of fundamental v	ibrational frequency b. 2	of H1 and D1 is		b. Discuss the rotat	tional Raman spectra of ¹⁶ O ₂ mo	lecule .	5
$\frac{1}{\sqrt{2}}$		d. $\sqrt{2}$		5.	a. Calculate the free on the basis of Raman effect is r	equencies of stokes and antisto quantum theory. Why the cla not accepted as the true theory?	kes Raman line ssical theory of	3+2=5
V2					b. Show that the in the applied mag	ntensity of NMR spectral line i netic field.	s dependent on	5
			Contd			[3]		P.T.O.

Contd...

[2]

2+2+1+ 1=5

2+1+1+ 1=5

3

2

4+1=5

1+4=5

5

5

3+2=5

5