M. Sc. Electronics
 First Semester
 Analog Electronic Circuits \& Devices
 (MSE-02)

Duration: 3Hrs.
Full Marks: 70
(PART-B: Descriptive)

Duration: $\mathbf{2}$ hrs. 40 mins.
Marks: 50

1. Answer the following questions: (any five):
$5 \times 2=10$
a) Explain why an N -MOS is preferred than P-MOS?
b) What are the limitations of h-parameters?
c) Explain why CE configured transistor amplifier is preferred?
d) Find -3 dB frequency for an amplifier.
e) Why voltage series feedback is commonly used in cascaded amplifier?
f) What is the Barkhausen criterion for an Oscillator?
g) Why an intrinsic semiconductor behaves like an insulator at absolute zero temperature?
2. Answer the following questions: (any five) $5 \times 3=15$
a) Explain the main differences between an ordinary diode and zener diode?
b) Find an Expression of Fermi level in an intrinsic semiconductor.
c) Find the relation between α and β.
d) For CE configured transistor prove that $\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}+(1+\beta) \mathrm{I}_{\mathrm{CO}}$
e) For an n-channel JFET prove that $\mathrm{g}_{\mathrm{m}}=\mathrm{g}_{\mathrm{mo}}\left(1-\mathrm{V}_{\mathrm{GS}} / \mathrm{Vp}\right)$
f) What are the characteristics of an ideal OP-AMP?
g) Calculate V_{CE} for a CE transistor amplifier as shown in the Fig. 1

Given: $V_{C C}=20 \mathrm{~V}$
$\mathrm{V}_{\text {in }}=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$
$\mathrm{R}_{\mathrm{C}}=3.3 \mathrm{~K} \Omega$
$\beta=200$

Fig. 1

3. Answer any five Questions :(any five)

$5 \times 5=25$
a) Find an expression of output voltage for an integrator by an OP-AMP.
b) Show that the bandwidth increases in negative feedback amplifier.
c) Find an expression for power efficiency of transformer coupled class a amplifier.
d) Find an expression of pinch-off voltage for an n-channel JFET.
e) Explain with neat diagram how CE npn transistor can be used as an amplifier as well as inverter.
f) Explain the V-I characteristics curve of an n-channel MOSFET with different drain current.
g) Find an expression for output voltage and calculate the output voltage for the given values as shown in the Fig. 2

Given: $R=1 \mathrm{~K}, \mathrm{~V}_{1}=5 \mathrm{~V}$,

$\mathrm{V}_{2}=3 \mathrm{~V}$

Fig. 2
N.B: The symbols have usual meanings

M.Sc. Electronics

First Semester

ANALOG ELECTRONIC CIRCUITS \& DEVICES

PART A: Objective

Time: 20 Min
Total marks: 20

Select the correct answer: (All Questions are compulsory):

(put ' V ' mark on the appropriate answer)

1. Which of the following transistor configuration produces 180° phase shift in output?
(a) CB
(b) CE
(c) CC
(d) All of them
2. The cut-in voltage of a Germanium diode is
(a) 0.7 V
(b) 0.2 V
(c) 0.3 V
(d) None
3. The efficiency of a full wave rectifier is
(a) 46.6%
(b) 1.21
(c) 81.2%
(d) 0.21
4. A negative feedback amplifier
(a) Increases gain
(b) Increases bandwidth
(c) Decreases bandwidth
(d) All of them
5. If $\mathrm{V}_{\text {Smax }}$ is the PIV of a half wave rectifier then the PIV of full wave rectifier is given by
(a) $V_{S \text { max }}$
(b) $\frac{V S \text { max }}{2}$
(c) $2 \mathrm{~V}_{\mathrm{Smax}}$
(d) $\sqrt{\text { VSmax }}$
6. In an intrinsic semiconductor the Fermi level lies
(a) Near conduction band
(b) Near valency band
(c) At middle band
(d) None
7. At very high temperature an n-type semiconductor behaves like
(a) Insulator
(b) Metal
(c) p-type semiconductor
(d) Intrinsic semiconductor
8. If β_{1} and β_{2} are the current gain of two transistor amplifier then overall current will be
(a) $\frac{\beta 1}{\beta 2}$
(b) $\beta_{1}+\beta_{2}$
(c) $\beta_{1}-\beta_{2}$
(d) $\beta_{1} \times \beta_{2}$
9. If f_{L} and f_{H} are the lower cut -off and upper cut -off frequency of an amplifier respectively then the centre cut-off frequency will be
(a) $f_{L} \times f_{H}$
(b) $\frac{f L \times f H}{2}$
(c) $\frac{\mathrm{fL}-\mathrm{fH}}{2}$
(d) $\sqrt{\mathrm{fL} \times \mathrm{fH}}$
10. An ideal OP-AMP has
(a) Infinite bandwidth
(b) Infinite input impedance
(c) Infinite CMRR
(d) All of them.
11. The audio frequency range is
(a) $10 \mathrm{~Hz}-20 \mathrm{~Hz}$
(b) $20 \mathrm{~Hz}-20 \mathrm{KHz}$
(c) $10 \mathrm{MHz}-20 \mathrm{MHz}$
(d) $10 \mathrm{KHz}-20 \mathrm{KHz}$
12. In FM radio the frequency range is
(a) $87 \mathrm{KHz}-105 \mathrm{KHz}$
(b) $87 \mathrm{MHz}-105 \mathrm{MHz}$
(c) $90 \mathrm{GHz}-100 \mathrm{GHz}$
(d) None
13. If a differential amplifier has differential mode gain 100 and common mode gain 0.01 then CMRR in dB will be
(a) 80 dB
(b) 90 dB
(c) 85 dB
(d) 100 dB
14. Which of the following is called high speed logic family?
(a) TTL
(b) RTL
(c) DTL
(d) ECL
15. As temperature increases the mobility of carriers in semiconductor
(a) Increases
(b) Decreases
(c) Remains constant
(d) None
16. In FETs the carriers move by the process of
(a) Diffusion only
(b) Drift only
(c) Diffusion and Drift
(d) None
17. If a transistor amplifier has $\alpha=0.99$ then the current gain in CC transistor amplifier will be
(a) 100
(b) 101
(c) 0.99
(d) 99
18. In BJT the current flows due to
(a) Electrons only
(b) Holes only
(c) Both electrons and holes
(d) None
19. In an n-channel FET current flows due to
(a) Electrons only
(b) Holes only
(c) Both electrons and holes
d) none
20. In an npn transistor the buried layer on the p-type substrate is
(a) n^{+}doped
(b) p^{+}doped
(c) both n^{+}and p^{+}doped
(d) none
