2012/01/MSE-01

MSE First Semester Engineering Mathematics & Statistics (MSE-01)

Duration: 3Hrs.

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

1. Answer the following questions (Any five)

- (a) Find a unit normal vector to the surface x² + 3y² + 2z² = 6 at the point P(2, 0, 1)
- (b) Find the divergence of the vector filed

$$\vec{V} = (x^2 - y^2)\hat{\imath} + 2xy\hat{\jmath} + (y^2 - xy)\hat{k}$$

(c) If $F{F(x)} = f(\lambda)$ then show that $F{F(x)cosax} = \frac{1}{2}{f(\lambda + a)} + f(\lambda - a)$

- (d) State and prove the linearity property of Laplace transform
- (e) Obtain the Laplace transform of $e^{-3}cosh2x$.
- (f) Find the Z-transform of the unit step function

$$U(k) = \begin{cases} 1, & \text{if } k = 0 \\ 0, & \text{if } k \neq 0 \end{cases}$$

(g) Two cards are drawn at random from a deck of 52 cards. Find the probability that both are spade.

PTO ...

 $5 \times 2 = 10$

Full Marks: 70

Marks: 50

REV-00 MSE/06/12

2. Answer the following questions (Any five)

- (a) Define curl of a vector. Show that gradient field describes an irrotational motion.
- (b) Prove that, $\nabla . (\nabla \times \vec{V}) = 0$, for every vector \vec{V} .
- (c) Solve: $\int_0^{\infty} F(x) \cos \lambda x \, dx = e^{-\lambda}$
- (d) If F is a periodic function of period ω that is $F(t + n\omega) = F(t)$, where n is a positive integer. Show that $L\{F(t)\} = \frac{\int_0^{\omega} e^{-\lambda x} F(x) dx}{1 - e^{-\lambda \omega}}$
- (e) Obtain the Laplace transform of $e^{-2t} \sinh 5t$.
- (f) Find the Z-transform of $cos\alpha k, k \ge 0$.
- (g) Suppose A and B be two events with P(A) = 0.6, P(B) = 0.3 and $P(A \cap B) = 0.2$. Find the probability of the following cases:
 - (i) B doesn't occur.
 - (ii) A or B occur
 - (ii) Neither A nor B occur.

3. Answer the following questions (Any 5)

(a) Write down the statement of Strokes theorem. Using this or otherwise, evaluate

$$\int_C \left[(2x - y)dx - yz^2 dy - y^2 z dz \right]$$

Where c is the circle $x^2 + y^2 = 1$, corresponding to the surface of the sphere of unit radius.

(b) Obtain the Fourier series of the following function

$$F(x) = \begin{cases} -x & \text{if } -\pi < x < 0\\ x & \text{if } 0 \le x < \pi \end{cases}$$

and hence find the sum of the Fourier series as $x = \pi/2$

$5 \times 5 = 25$

- (c) Using convolution theorem, obtain the inverse Laplace transform of $\frac{7}{(\lambda-7)(\lambda^2+25)}$
- (d) Solve the difference equation by using Z-transform $6y_{k+2} - y_{k-1} - y_k = 0, k \ge 2, y_{(0)} = 0, y_1 = 1$
- (e) Define probability density function. If

 $f(x) = Ae^{-3x} - 1, \quad 0 \le x \le 1$

is a probability density function of a random variable X, the find the value of A. Also find E(X).

(f) State Parsevel's identity for Fourier cosine transform. Using it, prove that

$$\int_0^\infty \frac{dx}{(a^2 + x^2)(b^2 + x^2)} = \frac{\pi}{2ab(a+b)}$$

(g) Define irrotational vector and scalar potential. Show that

$$\vec{F} = (y^2 + 2xz^2)\hat{\imath} + (2xy - z)\hat{\jmath} + (2x^2z - y + 2z)\hat{k}$$

is irrotational and hence find its scalar potential.

MSE/06/12

MSE First Semester ENGINEERING MATHEMATICS & STATISTICS (MSE-01)

PART A: Objective

Duration: 20 minutes

Marks - 20

(Choose the correct option and make a circle around the corresponding number)

- 1. The unit vector along the vector $\hat{\imath} 2\hat{j} + 2\hat{k}$ is
 - (a) 1 (b) $\frac{1}{\sqrt{3}} (\hat{i} 2\hat{j} + 2\hat{k})$
 - (b) $\frac{1}{3}(\hat{i}-2\hat{j}+2\hat{k})$ (d) $\frac{1}{3}$
- 2. If \overline{r} is a irrational vector then
 - (a) $\Delta \times \vec{r} = 0$ (b) $\Delta . \vec{r} = 0$

(c)
$$\Delta \vec{r} = 0$$
 (d) $\Delta \times (\Delta \vec{r}) = 0$

3. Let $\phi(x, y, z) = c$ be a family of surfaces. Then which of the following is not true

(a) $\Delta \phi$ is a vector.

- (b) $\Delta \phi$ is a vector normal to the surface $\phi(x, y, z) c$
- (c) $\Delta \phi$. \hat{d} is the directional derivative of ϕ in the direction of \vec{d} .

(d) $\Delta \phi$ is a vector tangent to the surface $\phi(x, y, z) = c$

- 4. If \vec{a} and \vec{b} are two vectors such that $\vec{a} \perp \vec{b}$ then
 - (a) $\vec{a} \cdot \vec{b} = 0$ (b) $\vec{a} \times \vec{b} = 0$ (c) $\vec{a} \cdot \vec{b} = |a||b|$ (d) $\vec{a} \times \vec{b} = \infty$
- 5. Which of the following is an odd function
 - (a) f(x) = cos2x
 - (b) $g(x) = cos2x + 3x^2$
 - (c) h(x) = sin3x
 - (d) $k(x) = x \sin 3x$
- 6. If $F{F(x)} = f(\lambda)$, then $F{F(ax)}$ is given by
 - (a) $\frac{1}{a}f(\frac{\lambda}{a})$
 - (b) $f(\frac{\lambda}{2})$
 - (c) $f(\lambda)$
 - (d) $e^{i\lambda a}f(\lambda)$

- 7. The convolution of two functions F(x) and G(x) defined on (∞, ∞) is
 - (a) $\int_{-\infty}^{\infty} F(x)G(x-u)du$
 - (b) $\int_{-\infty}^{\infty} F(u)G(x-u)du$
 - (c) $\int_{-\infty}^{\infty} F(x)G(x+u)du$
 - (d) $\int_{-\infty}^{\infty} F(u)G(x+u)du$

8. If $F{F(x)} = f(\lambda)$ and $F{G(x)} = g(\lambda)$, then Parsevals identity states that

(a)
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\lambda)g(\bar{\lambda})d\lambda = \int_{-\infty}^{\infty} F(\bar{x})g(x)dx$$

(b) $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\lambda)g(\bar{\lambda})d\lambda = \int_{-\infty}^{\infty} F(\bar{x})g(\bar{x})dx$
(c) $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\bar{\lambda})g(\bar{\lambda})d\lambda = \int_{-\infty}^{\infty} F(x)g(x)dx$
(d) $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\lambda)g(\bar{\lambda})d\lambda = \int_{-\infty}^{\infty} F(x)g(\bar{x})dx$

- 9. The value of $\int_0^{\infty} \sin 2t \, \delta(t-\pi) dt$ is
 - (a) -1 (b) 1
 - (c) 0 (d) \propto

10. Laplace transform of $\cos \omega t$ is

(a)
$$\frac{\omega}{\lambda^2 + \omega^2}$$

(b) $\frac{\lambda}{\lambda^2 + \omega^2}$
(c) $\frac{\omega}{\lambda^2 - \omega^2}$
(d) $\frac{\lambda}{\lambda^2 + \omega^2}$

A

11. Laplace inverse transform of $\frac{1}{\lambda^2}$ is

(a) 1 (b) t (c) $\frac{t^2}{2}$ (d) t^2

12. If $L{F(t)} = f(\lambda)$, then $L{e^{\alpha r}F(t)}$ is

- (a) $f(\lambda + a)$
- (b) $f(\lambda^2 a^2)$
- (c) $f(\lambda a)$
- (d) $\frac{1}{a}f(\frac{\lambda}{a})$

РТО...

13. $L^{-1}\left\{\frac{1}{\lambda^2-7}\right\}$ is (a) sin7t (b) $sin\sqrt{7}t$ (c) $\frac{1}{\sqrt{7}} \sin \sqrt{7}t$ (d) $\frac{1}{\sqrt{7}} sinh\sqrt{7}t$ 14. The corresponding to k = -2 and k = 2 of (a) 7 and 0 (c) 0 and 7

15. Z-transform of the unit impulse $\delta(k) = \begin{cases} 1, & \text{if } k = 0\\ 0, & \text{if } k \neq 0 \end{cases}$ is

- (b) $\frac{z}{z-1}$ (a) 0
- (d) -1 (c)1

16. The poles of $\frac{Z^2+3z-1}{(z^2-1)(z-2)}$ are

- (a) 1, 2 (b) −1, 1, 2
- (c)-*i*,*i*,2 (d) 0, 1, 2

17. The total number of Possible outcomes of throwing three dice simultaneously

(b)10 and 3

(d)3 and 10

- ⁶C₃ (a)
- ⁶P₂ (b)
- (c) 6 × 6 × 6
- (d) 3 × 6

18. Which of the following is not true for any two independent events A and B

- (a) $P(A \cap B) = P(A)P(B)$
- (b) P(A/B) = A
- (c) P(B/A) = B
- (d) $P(A \cap B) = P(A) + P(B)$

19. The mean and variance of the Poisson distribution $P(n, \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$ are respectively

(b) 2, 1 (a) n, λ (d) $n\lambda$, λ^2 (c) λ , $n\lambda$

20. If A and B are two mutually exclusive events, and P(A) = 0.2, $P(A \cup B) = 0.58$, then P(B) is

- (a) 0.8 (b) 0.78
- (b) 0.30 (d) 0.38
