REV-00 MSM/17/22

2016/12

### M.Sc. MATHEMATICS First Semester TOPOLOGY (MSM - 104)

**Duration: 3Hrs.** 

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

#### Answer any four from Question no. 2 to 8 Question no. 1 is compulsory.

**1.** (a) Let U consists of  $\phi$  and all those subsets G of  $\Box$  having property that to each  $x \in G$ , there exists  $\varepsilon > 0$  such that  $(x - \varepsilon, x + \varepsilon) \subset G$ . Show that U is a topology for  $\Box$ .

(b) Prove that

(i)  $[0,1] \sim (0,1)$ , (ii)  $[0,1] \sim [0,1)$ , (iii)  $[0,1] \sim (0,1]$ 

**2.** (a) Let  $\mathfrak{T}$  be the collection of subsets of  $\Box$  consisting of empty set  $\phi$  and all subsets of the form  $G_m = \{m, m+1, m+2, \dots\}, m \in \Box$ .

Show that  $\Im$  is a topology for  $\square$ . What are the open sets containing 5?

- (b) Consider the topology  $\Im = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$  on the set  $X = \{a, b, c, d, e\}$ . List the members of the relative topology  $\Im_{Y}$  on  $Y = \{a, c, e\}$ . (5+5=10)
- 3. (a) Consider the topology  $\Im = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$  on the set  $X = \{a, b, c\}$ . Find all limit points of the sets (i)  $A = \{b, c\}$ , (ii)  $B = \{a, c\}$ .
  - (b) What is a door space? Give one example.
  - (c) Consider the topology  $\Im = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, c, d\}, \{a, b, e\}\}$  on the set  $X = \{a, b, c, d, e\}$ . List the neighbourhood of the point *e*. (6+2+2=10)
- 4. (a) Define base for a topology. Let X = {a,b,c,d,e} and let B.= {{a,b},{b,c},{a,d,e}}. Find the topology on X generated by B.

Full Marks: 70

Marks: 50

(6+4=10)

(b) Consider the topology  $\Im = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$  on the set  $X = \{a, b, c, d\}$ . Let the function  $f: X \to X$  defined by the following diagram.



Show that f is not continuous at c and d. (5+5=10)

- 5. (a) Prove that the property of a space being separable is a topological property.
  - (b) Show that the space  $(\Box, U)$  is  $T_3$ -space. (5+5=10)
- 6. (a) Let Y be subspace of topological space X and let  $A \subset Y$ . Then prove that A is compact relative to X if and only if A is compact relative to Y.
  - (b) Prove that closed subsets of compact sets are compact. (7+3=10)
- 7. (a) Consider the topology  $\Im = \{X, \phi, \{a\}, \{b, c\}\}$  on the set  $X = \{a, b, c\}$ . Show that  $(X, \Im)$  is a regular space.
  - (b) Prove that compact spaces have Bolzano Weistress property. (5+5=10)
- 8. (a) Prove that continuous image of a connected space is connected.
  - (b) Prove that every component of a topological space is closed. (7+3=10)

\*\*\*\*\*

REV-00 MSM/17/22

## M.Sc. MATHEMATICS First Semester TOPOLOGY (MSM - 104)

## **Duration: 20 minutes**

# (PART A - Objective Type)

#### I. Choose the correct answer:

- 1. A set is called countable if it is
  - a. Finite or denumerable b. Infinite or denumerable
    - c. Denumerable d. None

## 2. A denumerable set has cardinality

a. N b.  $N_0$  c.  $\alpha$  d.  $\beta$ 

3. If  $A \sim A'$ ,  $B \sim B'$ ,  $A \cap B = \emptyset$  and  $A' \cap B' = \emptyset$ , then

a. 
$$\#(A \cup B) = \#(A \cap B)$$

b.  $\#(A \cup B) = \#(A' \cap B')$ 

c. 
$$\#(A \cup B) = \#(A \times B)$$

d.  $\#(A \cup B) = \#(A' \times B')$ 

4. If  $a \in \Box$ , then  $\{a\}$  is a *closed/open* set in usual topology for  $\Box$ . (Pick the correct one)

- **5.** The interval (0,1] is a neighbourhood of 0 under the usual topology of  $\Box$ . State *Yes or NO*.
- 6. Let (X,D) be any discrete topological space. Then derived set of A is
  - a. Singleton Set c. Empty Set
  - b. Non-empty Set d. None

2016/12

Marks – 20

 $1 \times 20 = 20$ 

- 7. Let  $\Im$  and  $\Im'$  be two topologies for X which have a common base **B**, then a.  $\Im = \Im'$  b.  $\Im \subset \Im'$  c.  $\Im \supset \Im'$  d.  $\Im \neq \Im'$
- 8. Let the real function  $f:\Box \to \Box$  be defined by  $f(x) = x^2$ , then f is a. Open b. Not open c. Closed d. Not continuous
- 9. The real line □ with the usual topology is a
  a. First countable
  b. Non Separable
  d. Compact

**10.** An indiscrete space is not a  $T_0$  - space. State *Yes or NO*.

**11.**Every  $T_0$ -space is  $T_1$ -space. State *Yes or NO*.

**12.** The property of a space being a normal space is

a. Hereditary property c. Topological property

b. Both hereditary and topological property d. None

**13.**Every  $T_2$ -space is  $T_1$ -space. State *Yes or NO*.

Consider the topology  $\Im = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$  on the set  $X = \{a, b, c\}$ . Then  $(X, \Im)$  is a a. Regular space c. Normal space

b.  $T_4$ -space d.  $T_1$ -space

15.Closed subsets of a compact set are

a. Compact b. Not compact

c. Closed

d. Open

16.Consider the following class of open intervals

 $\mathbf{A} = \left\{ (0,1), \left(0,\frac{1}{2}\right), \left(0,\frac{1}{3}\right), \left(0,\frac{1}{4}\right), \dots \right\}.$ 

Then A has *FIP/empty* intersection. (Pick the correct one)

| <b>17.</b> Every closed and bounded interval in $\Box$ is |      |               |           |             |
|-----------------------------------------------------------|------|---------------|-----------|-------------|
| a. Compact                                                | b    | . Not compact | c. Finite | d. Infinite |
|                                                           |      |               |           |             |
| <b>18.</b> Cantor's set $\Gamma$ is                       |      |               |           |             |
| a. Not compact                                            |      | . Compact     | c. Open   | d. None     |
|                                                           |      |               |           |             |
| <b>19.</b> A connected space hascomponent.                |      |               |           |             |
| a. 1                                                      | b. 2 | c. 3          | d. 4      |             |
|                                                           |      |               |           |             |

\*\*\*\*\*

20. Two disjoint sets are separated. State Yes or NO.