M.Sc. MATHEMATICS
 First Semester
 TOPOLOGY
 (MSM - 104)

Duration: 3Hrs.
Full Marks: 70

$$
\begin{aligned}
\text { Part-A }(\text { Objective }) & =20 \\
\text { Part-B }(\text { Descriptive }) & =50
\end{aligned}
$$

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.
Marks: 50

Answer any four from Question no. 2 to 8
 Question no. 1 is compulsory.

1. (a) Let U consists of ϕ and all those subsets G of \square having property that to each $x \in G$, there exists $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subset G$. Show that U is a topology for
(b) Prove that
(i) $[0,1] \sim(0,1)$,
(ii) $[0,1] \sim[0,1)$,
(iii) $[0,1] \sim(0,1]$
2. (a) Let \mathfrak{F} be the collection of subsets of \square consisting of empty set ϕ and all subsets of the form $G_{m}=\{m, m+1, m+2, \ldots\}, m \in \square$.

Show that \mathfrak{J} is a topology for \square. What are the open sets containing 5 ?
(b) Consider the topology $\mathfrak{J}=\{X, \phi,\{a\},\{a, b\},\{a, c, d\},\{a, b, c, d\},\{a, b, e\}\}$ on the set $X=\{a, b, c, d, e\}$. List the members of the relative topology \Im_{Y} on $Y=\{a, c, e\}$.
3. (a) Consider the topology $\mathfrak{J}=\{X, \phi,\{a\},\{a, b\},\{a, c\}\}$ on the $\operatorname{set}^{X=\{a, b, c\}}$. Find all limit points of the sets (i) $A=\{b, c\}$, (ii) $B=\{a, c\}$.
(b) What is a door space? Give one example.
(c) Consider the topology $\mathfrak{J}=\{X, \phi,\{a\},\{a, b\},\{a, c, d\},\{a, b, c, d\},\{a, b, e\}\}$ on the set $X=\{a, b, c, d, e\}$. List the neighbourhood of the point e.
4. (a) Define base for a topology. Let $X=\{a, b, c, d, e\}$ and letB $=\{\{a, b\},\{b, c\},\{a, d, e\}\}$. Find the topology on X generated by \mathbf{B}..
(b) Consider the topology $\mathfrak{J}=\{X, \phi,\{a\},\{b\},\{a, b\},\{b, c, d\}\}$ on the set $X=\{a, b, c, d\}$. Let the function $f: X \rightarrow X$ defined by the following diagram.

Show that f is not continuous at c and d.
5. (a) Prove that the property of a space being separable is a topological property.
(b) Show that the space (\square, U) is T_{3}-space.
6. (a) Let Y be subspace of topological space X and let $A \subset Y$. Then prove that A is compact relative to X if and only if A is compact relative to Y.
(b) Prove that closed subsets of compact sets are compact.
7. (a) Consider the topology $\mathfrak{I}=\{X, \phi,\{a\},\{b, c\}\}$ on the set $X=\{a, b, c\}$. Show that (X, \mathfrak{I}) is aregular space.
(b) Prove that compact spaces have Bolzano Weistress property.
$(5+5=10)$
8. (a) Prove that continuous image of a connected space is connected.
(b) Prove that every component of a topological space is closed.

M.Sc. MATHEMATICS

(PART A - Objective Type)

I. Choose the correct answer:

1. A set is called countable if it is
a. Finite or denumerable
b. Infinite or denumerable
c. Denumerable
d. None
2. A denumerable set has cardinality
a. N
b. N_{0}
c. α
d. β
3. If $A \sim A^{\prime}, B \sim B^{\prime}, A \cap B=\varnothing$ and $A^{\prime} \cap B^{\prime}=\varnothing$, then
a. $\#(A \cup B)=\#(A \cap B)$
b. $\#(A \cup B)=\#\left(A^{\prime} \cap B^{\prime}\right)$
c. $\#(A \cup B)=\#(A \times B)$
d. $\#(A \cup B)=\#\left(A^{\prime} \times B^{\prime}\right)$
4. If $a \in \square$, then $\{a\}$ is a closed/open set in usual topology for \square. (Pick the correct one)
5. The interval ${ }^{(0,1]}$ is a neighbourhood of 0 under the usual topology of \square. State Yes or NO.
6. Let (X, D) be any discrete topological space. Then derived set of A is
a. Singleton Set
c. Empty Set
b. Non-empty Set
d. None
7. Let \Im and \mathfrak{J}^{\prime} be two topologies for X which have a common base \mathbf{B}, then
a. $\mathfrak{I}=\mathfrak{J}^{\prime}$
b. $\mathfrak{J} \subset$
c. \mathfrak{J}
d. $\mathfrak{J} \neq \Im^{\prime}$
8. Let the real function $f: \square \rightarrow \square$ be defined by $f(x)=x^{2}$, then f is
a. Open
b. Not open
c. Closed
d. Not continuous
9. The real line \square with the usual topology is a
a. First countable
c. Separable
b. Non Separable
d. Compact
O.An indiscrete space is not a T_{0} - space. State Yes or NO.
11.Every T_{0}-space is T_{1}-space. State Yes or NO.
10. The property of a space being a normal space is
a. Hereditary property
c. Topological property
b. Both hereditary and topological property
d. None
13.Every T_{2}-space is $T_{1-\text { space. State Yes or } N O .}$
t.Consider the topology $\mathfrak{J}=\{X, \phi,\{a\},\{b\},\{a, b\}\}$ on the $\operatorname{set}^{X=\{a, b, c\}}$. Then (X, \mathfrak{J}) is a
a. Regular space
c. Normal space
b. ${ }^{T_{4}}$-space
d. ${ }_{1}$-space
11. Closed subsets of a compact set are
a. Compact
b. Not compact
c. Closed
d. Open
12. Consider the following class of open intervals

$$
\mathrm{A}=\left\{(0,1),\left(0, \frac{1}{2}\right),\left(0, \frac{1}{3}\right),\left(0, \frac{1}{4}\right), \ldots \ldots\right\} .
$$

Then A has FIP/empty intersection. (Pick the correct one)
17. Every closed and bounded interval in \square is
a. Compact
b. Not compact
c. Finite
d. Infinite
18. Cantor's set Γ is
a. Not compact
b. Compact
c. Open
d. None
19. A connected space has \qquad component.
a. 1
b. 2
c. 3
d. 4
20.Two disjoint sets are separated. State Yes or NO.

