REV-00 MSE/09/14

M.Sc. ELECTRONICS Third Semester ELECTROMAGNETIC THEORY & MICROWAVE TECHNOLOGY (MSE - 302)

Duration: 3Hrs.

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Full Marks: 70

Answer any four from Question no. 2 to 8 Question no. 1 is compulsory.

- 1. (a) Explain with diagram the basic operation of RADAR.
 - (b) Derive RADAR range equation explaining meaning of each term.

(5+5=10)

- 2. (a) Write Poynting Theorem. Derive the mathematical expression using Maxwell's equation.
 - (b) The magnetic field intensity of uniform plane wave in air is 20 A/m in a_y^{\uparrow} direction. The wave is propagating in a_z^{\uparrow} direction at an angular frequency of 2×10^9 rad/sec.
 - Find: a) wavelength b) frequency c) period and d) amplitude (5+5=10)
- 3. (a) Derive voltage and current equations for transmission line.
 - (b) Calculate the series impedance and shunt admittance of a transmission line at $\omega = 5.5 \times 10^3 \text{ rad/sec}$. The primary parameters of line are

 $R = 10.4 \text{ ohm}, L = 3.64 \text{ mH}, C = 0.00825 \mu F \text{ and } G = 0.08 \mu \text{mho}.$ (5+5=10)

2016/12

- 4. (a) Find the greatest number of half waves of electric intensity with which it may be possible to propagate a signal of 10 GHz in a waveguide whose wall separation is 0.05m. Calculate the guide wavelength for this mode of propagation.
 - (b) Obtain expressions for phase velocity and group velocity between parallel

planes. Prove that
$$\frac{1}{{\lambda_0}^2} = \frac{1}{{\lambda_c}^2} + \frac{1}{{\lambda_g}^2}$$
 (6+4=10)

- 5. (a) Derive wave equation for conducting medium.
 - (b) Find the value of attenuation constant (α) and phase constant (β) for conducting medium.
 (5+5=10)
- 6. (a) Explain the operation of magnetron with the aid of suitable schematic diagram.(b) Write short notes on:
 - (i) Velocity modulation (ii) TWT

(5+5=10)

- 7. (a) Explain the working principle of reflex klystron with suitable diagram. Also mention its different applications.
 - (b) The characteristic impedance of a uniform transmission line is $_{2040 \Omega}$ at the frequency of $_{800 Hz}$. At this frequency, propagation constant is $_{0.054 \angle 87.9^{\circ}}$. Determine $_{R,L,G}$ and $_{C}$.

(5+5=10)

8. (a) What is antenna? Explain different parameters involved in measurement of antenna performance.

- (b) Write short notes on:
 - (i) IMPATT diode (ii) Varactor diode

(6+4=10)

REV-00 MSE/09/14

M.Sc. ELECTRONICS Third Semester ELECTROMAGNETIC THEORY & MICROWAVE TECHNOLOGY (MSE - 302)

Duration: 20 minutes

(PART A - Objective Type)

I. Choose the correct answer:

- 1. The wave equation for free space in terms of E is:
 - a) $\nabla^{2}E = \mu_{0}\varepsilon_{0}\frac{\partial^{2}E}{\partial t^{2}}$ b) $\vec{\nabla}^{2}E = \mu_{0}\varepsilon_{0}\frac{\partial^{2}E}{\partial t^{2}}$ c) $\nabla^{2}E = \frac{1}{\mu_{0}\varepsilon_{0}}\frac{\partial^{2}E}{\partial t^{2}}$ d) $\nabla^{2}E = \mu_{0}\varepsilon_{0}\frac{\partial E}{\partial t}$
- 2. Velocity of wave in free space is
 - a) $\frac{1}{\sqrt{\mu\varepsilon}}$ b) $\sqrt{\mu\varepsilon}$ c) $\frac{1}{\sqrt{\mu_0\varepsilon_0}}$ d) $\sqrt{\mu_0\varepsilon_0}$
- 3. The characteristics of good conductor is

a)
$$\frac{\sigma}{\omega\varepsilon}$$
 $\langle 1$ b) $\frac{\sigma}{\omega\varepsilon}$ $\langle 1$ c) $\frac{\omega}{\sigma\varepsilon}$ $\langle 1$ d) $\frac{\omega}{\sigma\varepsilon}$ $\langle 1$

- 4. The Poynting vector is equal to a) $E \cdot H$ b) $E \times H$ c) $\frac{E}{H}$ d) $\frac{H}{E}$
- 5. Which of the following statements are true for a transmission line parameters *R*, *L*, *G* and *C*? a) *R* and *L* are series elements.
 - b) *G* and *C* are shunt elements.
 - c) both *R* and *G* depend on conductivity of the conductors forming the line.
 - d) only*R* depends explicitly on frequency.
- 6. The voltage reflection coefficient at the load end is

a)
$$\Gamma_L = \left(\frac{Z_L - Z_0}{Z_L + Z_0}\right)$$
 b) $\Gamma_L = \left(\frac{Z_0 - Z_L}{Z_0 + Z_L}\right)$ c) $\Gamma_L = \left(\frac{Z_L + Z_0}{Z_L - Z_0}\right)$ d) $\Gamma_L = \left(\frac{Z_L - Z_0}{Z_L + Z_0}\right)^2$

7. Attenuation constant(α) for wave propagating in conducting medium is given by

a)
$$\omega \sqrt{\left(\frac{\mu\omega}{2}\right)} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} - 1 \right]$$

b) $\omega \sqrt{\left(\frac{\mu\omega}{2}\right)} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1 \right]$
c) $\sqrt{\left(\frac{\mu\omega}{2}\right)} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} - 1 \right]$
d) $\sqrt{\left(\frac{\mu\omega}{2}\right)} \left[\sqrt{1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^2} + 1 \right]$

2016/12

1×20=20

Marks - 20

	8. Which of the followa) grad div	ings is a mathemati b) div grad	cally incorrect expr c) curl grad	ression? d) grad div	
	9. An antenna is termin a) V/I	nating device which b) V	c) I	b E/H wave d) P	
	10.In PIN diode, layer l a) intrinsic layer c) impedance layer	between PN junctio b) insulator d) none of t	n is layer he above		
	11. The conduction current density in a conducting medium is given by				
	a) $J = \sigma E$	b) $J = \frac{\sigma}{E}$	c) $J = \frac{E}{\sigma}$	d) $J = \frac{\sigma^2}{E}$	
	12.Klystron is a microv a) oscillator	vave b) amplifier	c) switch	d) none of the above	
	13.The variation in electron velocity in drift space is known asa) velocity modulationb) speed modulationc) space modulationd) none of the above				
	14. Which among the formula $(a) \nabla \cdot B = \rho_v$	llowing is a valid for $b \nabla \cdot E = \rho_v$	orm of Maxwell's e c) $\nabla \times B = J$	quation? d) $\nabla \cdot D = \rho_v$	
	15. If a plane wave satisfies the equation $\frac{\partial^2 E_x}{\partial z^2} = \frac{1}{\sigma^2} \frac{\partial E_x}{\partial x^2}$, the wave propagates in				
	a) x direction	b) z direction	c) both a) and b)	d) y direction	
	16.Negative resistance a) TRAPATT	effect is observed in b) IMPATT	n c) Gunn diode	d) Magnetron	
	17.Intrinsic impedance a) 376Ω	of free space is b) 377Ω	c) 375Ω	d) none of the above	
 18. What is the major factor for determining whether a medium is free space, lossless dielectric, lossy dielectric or good conductor? a) attenuation constant b) constitutive parameters (α, ε, μ) c) loss tangent d) intrinsic impedance 					
19. Characteristic impedance Z_0 of a transmission line at microwave frequencies is					
	a) $\sqrt{\frac{L}{C}}$	b) $\sqrt{\frac{C}{L}}$	c) \sqrt{LC}	d) $\sqrt{\frac{1}{LC}}$	
	20.Signals coming back a) echos	from RADAR targ b) reflected signal	get is known as c) pulse	d) none of the above	
