M.Sc. ELECTRONICS
 First Semester ENGINEERING MATHEMATICS \& STATISTICS (MSE - 101)

Duration: 3Hrs.
Full Marks: 70
Part-A (Objective) $=20$
Part-B (Descriptive) $=\mathbf{5 0}$
(PART-B: Descriptive)
Duration: $\mathbf{2}$ hrs. $\mathbf{4 0}$ mins.
Marks: 50
Answer any four from Question no. 2 to 8
Question no. 1 is compulsory.

1. State Green's Theorem in the plane. If $f=f_{1} i+f_{2} j+f_{3} k$ is a differentiable vector point function, then curl $\mathrm{f}=\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) i+\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right) j+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) k$. Evaluate $\int_{c} F . d r$, where $F=x^{2} i+y^{3} j$ and curve C is the arc of the parabola $y=x^{2}$ in the $x-y$ plane from $(0,0)$ to $(1,1)$.
2. Find the Laplace transform of
(a) $t^{2} e^{-t} \cos t$
(b) $\frac{1-e^{-t}}{t}$
3. Find the inverse Laplace transform of
(a) $\frac{a^{2}}{s(s+a)^{3}}$
(b) $\log \frac{s-1}{s+1}$
(a) Find the Fourier coefficients corresponding to the function

$$
\begin{aligned}
F(x) & =0,-5<x<0 \\
& =3,0<x<5 \quad, \text { Period }=10
\end{aligned}
$$

(b) Find the corresponding Fourier series.
(c) How should $\mathrm{F}(\mathrm{x})$ be defined $\mathrm{x}=-5, \mathrm{x}=0, \mathrm{x}=5$ in order that the Fourier series will converge to $\mathrm{F}(\mathrm{x})$ for $-5 \leq x \leq 5$.
5. Fin the Fourier integral of $f(x)=e^{-k x}$ where $\mathrm{x}>0, k>0$ and $\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})$ and show that $\int_{0}^{\alpha} \frac{w \sin w x}{k^{2}+w^{2}} d w=\frac{\pi}{2} e^{-k x}$ and deduce that

$$
(6+4=10)
$$

$$
\int_{0}^{\alpha} \frac{\sin w x}{w} d w=\frac{\pi}{2}
$$

6. Write a brief note on Poisson Distribution and mention its applications. If the probability of a bad reaction from a certain injection is 0.001 , determine the chance that out of 2000 individuals more than two will get a bad reaction. $\quad(5+5=10)$
7. Find the Z transform of $(5+5=10)$
(a) $\sin (3 n+5)$
(b) $3 n-4 \sin \frac{n \pi}{4}+5 x$
8. Using convolution theorem evaluate $Z^{-1}\left\{\frac{z^{2}}{(z-a)(z-b)}\right\}$. Show that $Z\left(\frac{1}{n!}\right)=e^{\frac{1}{2}}$

$$
(5+5=10)
$$

M.Sc. ELECTRONICS
 First Semester
 ENGINEERING MATHEMATICS \& STATISTICS
 (MSE - 101)

Marks - 20
(PART A - Objective Type)

I. Choose the correct answer:

1. The Laplace transform of t^{n} is:
(i) $\frac{n}{s}$
(ii) $\frac{n!}{s^{n+1}}$
(iii) $\frac{n!}{s^{n-1}}$
(iv) nt
2. The Z transform of n^{p}, p being a positive integer:
(i) $-z \frac{d}{d z} Z\left(n^{p-1}\right)$
(ii) $-z \frac{d}{d z} Z\left(n^{p+1}\right)$
(iii) z (iv) np
3. If $Z\left(u_{n}\right)=U(z)$, then we have:
(i) $Z\left(a^{-n} u_{n}\right)=U(a z)$
(ii) $Z\left(a^{-n} u_{n}\right)=U(1)$
(ii) $Z\left(a^{-n} u_{n}\right)=U(z / a)$
(iv) $Z\left(a^{-n} u_{n}\right)=U(a)$
4. If $U(z)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}}$, then u_{2} is:
(i) 1
(ii) 2
(iii) 3
(iv) None of these
5. The value of $n_{p_{r}}$ is:
(i) $n_{c_{r}}$
(ii) $n_{c_{r}} r$!
(iii) $n_{c_{r}} r^{2}$
(iv) None of these
6. The number of permutations of all the letters of the word ENGINEERING is:
(i) 36250
(ii) 277200
(iii) 297840
(iv) 7666340
7. The mean and standard deviation of a binomial distribution is:
(i) $\mathrm{n}-\mathrm{p}$ and npq
(ii) $n p$ and $n p q$
(iii) $n p$ and $\sqrt{n p q}$
(iv) None of these
8. By convolution theorem of Z transformation if $Z^{-1}[U(z)]=u_{n}$ and $Z^{-1}[V(z)]=v_{n}$ then $Z^{-1}[U(z) V(z)]$ is equal to
(i) $u_{n} * v_{n}$
(ii) uv
(iii) UxV
(iv) None of these
9. The probability of r successes in a binomial distribution is
(i) $P(r)=n_{c_{r}} p^{r} q^{n}$
(ii) $P(r)=n_{c_{r}} p^{r} q^{n-r}$
(iii) $P(r)=n_{c_{r}} p^{n-r} q^{n-r}$
(iv) $P(r)=n_{c_{r}} p^{r} q^{r}$
10. The Z transform of $(n+1)^{2}$ is
(i) $\frac{Z}{Z-1}$
(ii) $\frac{z^{2}(2 Z+1)}{(z-1)^{3}}$
(iii) $\frac{z^{2}(2 Z)}{(z-1)^{2}}$
(iv) z
11.If $r=\sin t i+\cos t j+t k$, then $\left|\frac{d r}{d t}\right|$ is
(i) $\sqrt{3}$
(ii) 4
(iii) $\sqrt{2}$
(iv) 1
12.If f and g are two scalar point function, then $f \Delta g+g \Delta f$ is
(i) $\nabla \cdot(f g)$
(ii) $\nabla \times(f g)$
(iii) $\nabla(f g)$
(iv) $f \Delta g$
11. A vector V is said to be solenoidal if
(i) $\operatorname{Div} \mathrm{V}=1$
(ii) curl $\mathrm{V}=0$
(iii) curl $\mathrm{v}=1$
(iv) $\operatorname{div} \mathrm{V}=0$
12. A vector f is said to be irrotational if
(i) $\nabla . f=0$
(ii) $\nabla \times f=0$
(iii) $\nabla f=0$
(iv) None of these
13. Suppose V is the volume bounded by a closed pieciewise smooth surface S. Suppose $F(x, y, z)$ is a vector function of position which is continuous and has continuous first partial derivatives in V . Then, $\iiint_{V} \nabla . F d v=\iint_{S} F . n d s$ where n is the outward drawn unit normal vector to S is
(i) Green's Theorem
(ii) Divergence theorem of Gauss
(iii) Hermite's formula
(iv) Gradient
14. For half range cosine series, we have
(i) $a_{n}=0, b_{n} \neq 0$
(ii) $b_{n}=0, a_{n} \neq 0$
(iii) $a_{n}=0, b_{n}=0$
(iv) None of these
15. A function $\mathrm{F}(\mathrm{x})$ in Fourier series is even if
(i) $\int_{-l}^{l} F(x) d x=0$
(ii) $\int_{-l}^{l} F(x) d x=2$
(ii) $\int_{-l}^{l} F(x) d x=\int_{0}^{l} F(x) d x$
(iv) $\int_{-l}^{l} F(x) d x=2 \int_{0}^{l} F(x) d x$
16. The function $\mathrm{F}(\mathrm{x})$ is called the inverse Fourier sine transform of $f_{s}(s)$ i.e $F(x)=$ $F_{s}^{-1}\left\{f_{s}(s)\right\}$ is equal to
(i) $\frac{2}{\pi} \int_{0}^{\alpha} f_{s}(s) \operatorname{sins} x d s$
(ii) $\frac{\pi}{2} \int_{0}^{\alpha} f_{s}(s) \operatorname{sinsxds}$
(iii) $\int_{0}^{\alpha} f_{s}(s) \sin s x d s$
(iv) None of these
19.The relation between Fourier and Laplace transform is
(i) $F(t)=L^{-1}\{\varphi(t)\}$
(ii) $L\{\varphi(t)\}=F^{-1}\{F(t)\}$
(iii) $F\{F(t)\}=L\{\varphi(t)$
(iv) $\varphi(\mathrm{t})=\mathrm{L}$
17. The distribution function $\mathrm{F}(\mathrm{x})$ of the discrete variate X is defined by
(i) $F(x)=\sum_{i=1}^{x} p\left(x_{i}\right)$
(ii) $F(x)=0$
(iii) $F(x)=0$
(iv) $F(x)=\sum_{i=1}^{x} x_{i}$
