REV-00 MSE/05/10

M.Sc. ELECTRONICS First Semester ENGINEERING MATHEMATICS & STATISTICS (MSE - 101)

Duration: 3Hrs.

Full Marks: 70

Marks: 50

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Answer any four from Question no. 2 to 8 **Ouestion no.** 1 is compulsory.

- 1. State Green's Theorem in the plane. If $f = f_1 i + f_2 j + f_3 k$ is a differentiable vector point function, then curl $f = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right)i + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}\right)j + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)k$. Evaluate $\int_{C} F. dr$, where $F = x^{2}i + y^{3}j$ and curve C is the arc of the parabola $y = x^{2}in$ the x-y plane from (0,0) to (1,1). (10)(5+5=10)
- 2. Find the Laplace transform of

(b) $\frac{1-e^{-t}}{t}$ $(a)t^2e^{-t}cost$

3. Find the inverse Laplace transform of

(a)
$$\frac{a^2}{s(s+a)^3}$$
 (b) $\log \frac{s-1}{s+1}$

(a) Find the Fourier coefficients corresponding to the function

$$F(x) = 0, -5 < x < 0$$

= 3, 0 < x < 5 , Period = 10

- (b) Find the corresponding Fourier series.
- (c) How should F(x) be defined x=-5, x=0,x=5 in order that the Fourier series will converge to F(x) for $-5 \le x \le 5$.

(5+2+3=10)

2016/12

(5+5=10)

- 5. Fin the Fourier integral of $f(x) = e^{-kx}$ where x > 0, k > 0 and f(-x)=-f(x) and show that $\int_0^{\alpha} \frac{wsinwx}{k^2+w^2} dw = \frac{\pi}{2}e^{-kx}$ and deduce that (6+4=10) $\int_0^{\alpha} \frac{sinwx}{w} dw = \frac{\pi}{2}$.
- 6. Write a brief note on Poisson Distribution and mention its applications. If the probability of a bad reaction from a certain injection is 0.001, determine the chance that out of 2000 individuals more than two will get a bad reaction. (5+5=10)

(5+5=10)

- 7. Find the Z transform of
 - (a) $\sin(3n+5)$ (b) $3n 4\sin\frac{n\pi}{4} + 5x$
- 8. Using convolution theorem evaluate $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$. Show that $Z\left(\frac{1}{n!}\right) = e^{\frac{1}{2}}$ (5+5=10)

REV-00 MSE/05/10

M.Sc. ELECTRONICS First Semester ENGINEERING MATHEMATICS & STATISTICS (MSE - 101)

Duration: 20 minutes

(PART A - Objective Type)

I. Choose the correct answer:

- 1. The Laplace transform of t^n is: (i) $\frac{n}{s}$ (ii) $\frac{n!}{s^{n+1}}$ (iii) $\frac{n!}{s^{n-1}}$ (iv) nt
- 2. The Z transform of n^p , p being a positive integer: (i) $-z \frac{d}{dz} Z(n^{p-1})$ (ii) $-z \frac{d}{dz} Z(n^{p+1})$ (iii) z (iv) np
- 3. If $Z(u_n) = U(z)$, then we have: (i) $Z(a^{-n}u_n) = U(az)$ (ii) $Z(a^{-n}u_n) = U(1)$ (ii) $Z(a^{-n}u_n) = U(z/a)$ (iv) $Z(a^{-n}u_n) = U(a)$
- 4. If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, then u_2 is: (i) 1 (ii) 2 (iii) 3 (iv) None of these
- 5. The value of n_{p_r} is: (i) n_{c_r} (ii) $n_{c_r}r!$ (iii) $n_{c_r}r^2$ (iv) None of these
- 6. The number of permutations of all the letters of the word ENGINEERING is: (i) 36250 (ii) 277200 (iii) 297840 (iv) 7666340
- 7. The mean and standard deviation of a binomial distribution is:
 (i) n − p and npq
 (ii) np and npq
 (iv) None of these
- 8. By convolution theorem of Z transformation if $Z^{-1}[U(z)] = u_n$ and $Z^{-1}[V(z)] = v_n$ then $Z^{-1}[U(z)V(z)]$ is equal to (i) $u_n * v_n$ (ii) uv (iii) UxV (iv) None of these
- 9. The probability of r successes in a binomial distribution is (i) $P(r) = n_{c_r} p^r q^n$ (ii) $P(r) = n_{c_r} p^r q^{n-r}$ (iii) $P(r) = n_{c_r} p^{n-r} q^{n-r}$ (iv) $P(r) = n_{c_r} p^r q^r$

10. The Z transform of $(n + 1)^2$ is (i) $\frac{Z}{Z-1}$ (ii) $\frac{z^2(2Z+1)}{(z-1)^3}$ (iii) $\frac{z^2(2Z)}{(z-1)^2}$ (iv) z 2016/12

1×20=20

Marks - 20

11.If $r = \sin t i + \cos t j$ (i) $\sqrt{3}$ (ii) 4	$\left \frac{dr}{dt} \right + tk$, then $\left \frac{dr}{dt} \right $ (iii) $\sqrt{2}$	is (iv) 1		
12.If f and g are two scalar point function, then $f\Delta g + g\Delta f$ is (i) $\nabla . (fg)$ (ii) $\nabla \times (fg)$ (iii) $\nabla (fg)$ (iv) $f\Delta g$				
13.A vector V is said to b (i) Div V= 1 (e solenoidal if ii) curl V=0	(iii) curl v =1	(iv) div V=0	
14. A vector f is said to be (i) $\nabla f = 0$ (e irrotational if ii) $\nabla \times f = 0$	(iii) $\nabla f = 0$	(iv) None of these	
15. Suppose V is the volume bounded by a closed pieciewise smooth surface S. Suppose $F(x, y, z)$ is a vector function of position which is continuous and has continuous first				
normal vector to S is (i) Green's Theorem (iii) Hermite's formula		(ii) Divergence theorem of Gauss (iv) Gradient		
16. For half range cosine series, we have (i) $a_n = 0, b_n \neq 0$ (ii) $b_n = 0, a_n \neq 0$ (iii) $a_n = 0, b_n = 0$ (iv) None of these				
17. A function F(x) in Fourier series (i) $\int_{-l}^{l} F(x) dx = 0$ (ii) $\int_{-l}^{l} F(x) dx = \int_{0}^{l} F(x) dx$		is even if (ii) $\int_{-l}^{l} F(x) dx = 2$ (iv) $\int_{-l}^{l} F(x) dx = 2 \int_{0}^{l} F(x) dx$		
18. The function F(x) is called the inverse Fourier sine transform of $f_s(s)$ <i>i.e</i> $F(x) = F_s^{-1}{f_s(s)}$ is equal to (i) $\frac{2}{\pi} \int_0^{\alpha} f_s(s) sinsxds$ (ii) $\frac{\pi}{2} \int_0^{\alpha} f_s(s) sinsxds$				
(iii) $\int_0^\alpha f_s(s)sinsxds$ ((iv) None of these		
(i) $F(t) = L^{-1}\{\varphi(t)\}$ (iii) $F\{F(t)\} = L\{\varphi(t)\}$	(ii) <i>L</i> (iv) (iv) (iv)	the transform is $\{\varphi(t)\} = F^{-1}\{F(p(t)) = L$	t)}	
20. The distribution function $F(x)$ of the discrete variate X is defined by (i) $F(x) = \sum_{i=1}^{x} p(x_i)$ (ii) $F(x) = 0$ (iii) $F(x) = 0$ (iv) $F(x) = \sum_{i=1}^{x} x_i$				

۲