REV-00 MSC/07/12

2016/12

M.Sc. CHEMISTRY First Semester (Repeat) ANALYTICAL CHEMISTRY (MSC - 104)

Duration: 3Hrs.

Full Marks: 70

Marks: 50

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Answer any *four* from *Question no.* 2 to 8 *Question no.* 1 is compulsory.

1. (a) Define equivalent mass of an oxidizing agent.	(2)
(b) The value of ΔG^{O} for the following reactions are given.	(2)
Creatine phosphate + H_2O ————————————————————————————————————	1
ADP + $P_i \longrightarrow ATP + H_2O$; $\Delta G^0 = 39.8 \text{ kjmol}^{-1}$	
Calculate the ΔG^{O}_{net} for the following reaction-	
Creatine phosphate + ADP	
(c) Draw the TGA plot for hydrated calcium oxalate.	(2)
(d) Calculate the results of the following expression:	(2)
(21.3±0.1)(17.6±0.02)	
Write briefly about the classification of analytical methods.	(2)
2. (a) What do you mean by a standard solution? Explain with example what	a
primary standard is and what a secondary standard is.	(3)
(b) Calculate the number of mmoles contained in 300 mg of an organic conta	mpound
of molecular formula $C_7H_6O_2$.	(2)
(c) (i) Calculate the molar concentration of NO_3^- ion in a solution prepare	d by
mixing 200 mL of 0.25 M KNO ₃ and 300 mL of 0.20 M $Ca(NO_3)_2$ s	olution
$[NO_3^{-1} = 62 \text{ gmol}^{-1}]$	(3)

(ii) What is the pc weight of Ag in 8.4g sample of AgCl of 80% purity						(Atomic		
mass of 1Ag=108g/mol)							(2)	
3. (a) Two sets of r	esults in mg/	Lit; One o	obtaine	d by a	stand	lard me	ethod and	other by a
new method a	re given belo	ow:						(5)
Standard met	nod: 30	25 22	23	35	31	33		
New method:	25	26 28	30	24	28	22		
Determine whether precision of new method differs significantly from the								hat of
standard method or not. The critical value of F for 7 degrees of freedom is							is 1.56.	
(b) Write three differences between accuracy and precision						(3)		
(c) What is confidence limit? Give mathematical expression for it						(2)		
4 (a) How can you	predict the	following	stages	ofare	action	n by co	omparing t	he value
of K and O y	when-	ione i ing	Stuges		action		inpung t	(3)
(i) Net reaction	on proceed in	forward	lirectio	n				(3)
(i) Net reaction proceed in forward direction.								
(ii) Net reaction proceed in backward direction.								
(111) No net reaction occurs.								
(b) Match column I with column II.							(5)	
	Colu	mn I	1. 10	Colu	ımn I	Ι		
	(i) Equilibr	ium	(a) <i>L</i>	\G>0,	K<1			
	(ii) Spontar	neous	(b) 2	$\Delta G=0$				
	(111) Nonspo	ontaneous	(c) /	$G^{\circ}=0$	TT. 1			6
		No. 1 and the	(d) 2	1G<0,	K>1			
(c) Write the relationship between Solubility (S) and K_{SP} for the electrolyte							e	
$Ca_{3}(PO_{4})_{2}$.						(2)		
5. (a) Explain the principle and instrumentation in Differential Thermal Analy							ysis. (5)	
(b) Draw and explain the DTA curve for Sulphur.							(5)	
		+2						

6. (a) An acidified solution of Fe^{+2} is titrated with 0.03 (M) KMnO₄ solution. If the titration required 22.4 mL, how many mg of Fe⁺² are in solution? (3)

(at mass of Fe = 55.8 g/mole)

(b	b) Calculate the normality of a Na_2CO_3 solution containing 1.06 g Na_2CO_3 in	n 200
	mL (2	2)
(c	e) Write about determinate errors and indeterminate errors. (including all	
	classification) (1	5)
. (a	a) Mention the instrumentation involved in Inductively Coupled Plasma – A	tomic
	Emission Spectroscopy.	5)
(b	b) (i) What will happen to the number of moles of SO_3 in equilibrium with S	O ₂
-2	and O_2 in each of the following cases in the reaction? (2+3=5)	5)
	$2SO_3(g) - 2SO_2(g) + O_2(g); \Delta H^\circ = 197 \text{ kJ}$	
	a. Oxygen gas is added	
	b. The pressure is increased by decreasing the volume of the reaction	
	container.	
	c. The temperature is decreased.	
	d. Gaseous sulfur dioxide is removed.	
	(ii) Mention the conditions required for getting favorable yield of ammonia	a in
	Haber process.	
. (a	a) What do you understand by quantitative and qualitative analysis? Write by	riefly
	about gravimetric and volumetric analysis. (0	6)
(b	b) Write briefly about the decomposition and dissolution of the samples. (4)	4)
-		
