REV-00 MSC/108/114

2016/12

M.Sc. CHEMISTRY First Semester ANALYTICAL CHEMISTRY (MSC - 101)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Answer any four from Question no. 2 to 8 Question no. 1 is compulsory.

1. (a) Define equivalent mass of an oxidizing agent.	(2)
(b) The value of ΔG^{0} for the following reactions are given.	(2)
Creatine phosphate + H_2O	ol ⁻¹
$ADP + P_i \longrightarrow ATP + H_2O;$ $\Delta G^O = 39.8 \text{ kjmol}^{-1}$	
\bigcirc Calculate the ΔG^{O}_{net} for the following reaction-	
Creatine phosphate + ADP	•
(c) Draw the TGA plot for hydrated calcium oxalate.	(2)
(d) Calculate the results of the following expression:	(2)
(21.3±0.1)(17.6±0.02)	
(e) Write briefly about the classification of analytical methods.	(2)
2. (a) What do you mean by a standard solution? Explain with example wh	at a
primary standard is and what a secondary standard is.	(3)
(b) Calculate the number of mmoles contained in 300 mg of an organic	compound
of molecular formula $C_7H_6O_2$.	(2)
(c) (i) Calculate the molar concentration of NO_3^- ion in a solution prepared	ared by
mixing 200 mL of 0.25 M KNO3 and 300 mL of 0.20 M Ca(NO3	$)_2$ solution.
$[NO_3^{-1} = 62 \text{ gmol}^{-1}]$	(3)

(ii) What is the	ne pc weight	of Ag in	8.4g sa	mple	ofAg	Cl of 8	0% purit	y? (Atomic
mass of 1	Ag=108g/m	ol)						(2)
3. (a) Two sets of r	esults in mg	Lit; One	obtaine	d by a	stanc	lard mo	ethod and	d other by a
new method a	re given bel	ow:						(5)
Standard metl	nod: 30	25 2	2 23	35	31	33		
New method:	25	26 2	8 30	24	28	22		
Determine wh	ether precis	ion of nev	v metho	od diff	ers si	gnifica	ntly fron	n that of
standard method or not. The critical value of F for 7 degrees of freedom is 1.56								
(b) Write three of	lifferences b	etween a	ccuracy	and p	recisi	on.		(3)
(c) What is confidence limit? Give mathematical expression for it (2)								
(c) What is confidence finite. Give mathematical expression for fit. (2)								
4. (a) flow call you	when	lonowing	stages	or a R	lactio	n by cc	mparing	
or K_c and Q_c when- (3)								
(i) Net reaction proceed in forward direction.								
(ii) Net reaction proceed in backward direction.								
(iii) No net re	action occur	s.						O
(b) Match colum	nn I with col	umn II.						(5)
	Colu	mn I		Col	umn I	I	T	
	(i) Equilibr	ium	(a) /	$\Delta G > 0$, K<1			
	(ii) Spontar	neous	(b)	$\Delta G=0$				
	(iii) Nonsp	ontaneous	s (c)	$\Delta G^{o} = 0$)		A second second	
		1 States	(d)	$\Delta G < 0$, K>1			

(c) Write the relationship between Solubility (S) and $K_{\mbox{\scriptsize SP}}$ for the electrolyte

Ca₃(PO₄)₂.

5. (a) Explain the principle and instrumentation in Differential Thermal Analysis. (5)

(2)

(3)

- (b) Draw and explain the DTA curve for Sulphur. (5)
- 6. (a) An acidified solution of Fe⁺² is titrated with 0.03 (M) KMnO₄ solution. If the titration required 22.4 mL, how many mg of Fe⁺² are in solution?

(at mass of Fe = 55.8 g/mole)

	an and a second second
(b) Calculate the normality of a Na_2CO_3 solution containing 1.06 g Na_2CO_3	, in 200
mL	(2)
(c) Write about determinate errors and indeterminate errors. (including all	
classification)	(5)
(a) Mention the instrumentation involved in Inductively Coupled Plasma -	Atomic
Emission Spectroscopy.	(5)
(b) (i) What will happen to the number of moles of SO_3 in equilibrium with	SO ₂
and O_2 in each of the following cases in the reaction? (2+3)	=5)
$2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g); \Delta H^\circ = 197 \text{ kJ}$	
a. Oxygen gas is added	
b. The pressure is increased by decreasing the volume of the reaction	
container.	
c. The temperature is decreased.	
d. Gaseous sulfur dioxide is removed.	
(ii) Mention the conditions required for getting favorable yield of ammo	nia in
Haber process.	
(a) What do you understand by quantitative and qualitative analysis? Write	briefly
about gravimetric and volumetric analysis.	(6)
(b) Write briefly about the decomposition and dissolution of the samples.	(4)

REV-00 MSC/108/114

M.Sc. CHEMISTRY First Semester ANALYTICAL CHEMISTRY (MSC - 101)

Duration: 20 minutes

(PART A - Objective Type)

I. Choose the correct answer:

1.	Normality o	of 1.72 g/L a solution of	$Ba(OH)_2$, [molar mass]	172 gmol^{-1}], is
	(i) 0.01(N)	(ii) 0.02(N)	(iii) 0.2 (N)	(iv) 0.1 (N)

- 2. Number of mmol in 29.8 mg of KCl, [mol mass 74.5 gmol⁻¹], is (i) 0.10 (ii) 0.20 (iii) 0.40 (iv) 0.04
- 3. The ppm concentration of 2.50×10^{-4} M Mg²⁺ [atomic mass 24 gmol⁻¹], is (i) 1.6 (ii) 6.0 (iii) 60.0 (iv) 10.0
- 4. If molar mass of K₂Cr₂O₇ is M gmol⁻¹, its equivalent weight in acidic medium is (i) M/6 (ii) M/3 (iii) M/5 (iv) M
- 5. Identify the INCORRECT statement regarding chemical equilibrium
 (i) All chemical reactions are, in principle, reversible.
 (ii) Equilibrium is achieved when the forward reaction rate equals the reverse reaction rate.
 - (iii) Equilibrium is achieved when the concentration of species become constant.
- (iv) Equilibrium is achieved when the reaction quotient Q equals the equilibrium constant.
- 6. Consider the gas-phase equilibrium system represented by the equation: $2H_2O(g) = 2H_2(g) + O_2(g)$

Given that the forward reaction (the conversion of "left-hand" species to "right-hand" species) is **endothermic**, which of the following changes will **decrease** the equilibrium amount of H_2O ?

(i) Adding more oxygen.

(ii) Adding a solid phase catalyst.

- (iii) Decreasing the volume of the container (the total pressure increases).
- (iv) Increasing the temperature at constant pressure.
- 7. For the reaction:

 $H_2(g)+I_2(g) \longrightarrow 2HI(g);$

The standard free energy change is greater than zero. The probable value of equilibrium constant for this reaction may be-

(i) K=0 (ii) K>1 (iii) K<1 (iv) K=1

8. In which of the following reaction, the equilibrium remains unaffected on addition of small amount of small amount of argon at constant volume-

(i) $H_2(g)+I_2(g) \longrightarrow 2HI(g)$ (ii) $PCl_5(g) \longrightarrow PCl_3(g)+Cl_2(g)$

(iii) $N_2(g)+3H_2(g) \longrightarrow 2NH_3(g)$ (iv) The equilibrium will unaffected in all the three cases.

2016/12

1×20=20

Marks – 20

e plasma				
s of a sample change along with- nce (ii) Heat flow against temperature (iv) Pressure against volume				
th i) Ne	(iv) SO ₂			
i) $3500 {}^{\circ}C$	(iv) 4000 ⁰ C			
y (iii) Standard (iv) Absolute	d deviation e error			
SD) is expressed in terms of per cent, then obtaine (iii) Absolute error (iv) None of these				
be corrected easily is (ii) Method error (iv) Personal error				
0 is i) 7	(iv) 10			
', 10 is i) 10	(iv) None of these			
r law- i) Aε= cl	(iv) None			
9.For a sample interacting with radiation, the technique used is- (i) Conductometry (iii) UV-visible spectroscopy(ii) Mass spectrometry (iv) TGA				
20.Based on electrical properties of the samples, the techniques used are- (i) TGA, DTA(ii) DTA, Mass Spectrometry (iv) Isotope analysis method				
	e plasma a sample change (ii) Heat flov (iv) Pressure h l) Ne ted up to l) $3500 ^{\circ}$ C (iii) Standard (iv) Absolute is expressed in the (iii) Absolute (iv) Absolute (iv) None of be corrected ease (ii) Method expressed (iv) Personal 0 is l) 7 , 10 is l) 10 law- l) A ϵ = cl on, the technique Mass spectrome) TGA samples, the tech) DTA, Mass Spectrome) Isotope analysi			
