M.Sc. MATHEMATICS
 THIRD SEMESTER SPECIAL THEORY OF RELATIVITY MSM-305 A

Duration: 3 Hrs.

Marks: 70
PART: A (OBJECTIVE) $=20$
PART: B (DESCRIPTIVE) $=50$
[PART-B: Descriptive]
Duration: 2 Hrs. 40 Mins.
Marks: 50
[Answer question no. One (1) \& any four (4) from the rest]

1. What do you mean by Space time Geometry? Explain Minkowski's Geometry of Space time.
2. What is result of Michelson-Morley Experiment? Proof the Michelson Morley Experiment with picture.
3. What is Longitudinal Doppler Effect? Describe Doppler Effect.
4. What is energy momentum tensor? Find out relativistic energy momentum tensor for a fluid.
5. State and Proof any two consequence of Lorentz Transformation.
6. Write Maxwell's electromagnetic equation? Find the invariance of Maxwell's electromagnetic equation.
7. What is the impact of Fresnal Drag Effect? Proof the Fresnel Drag effect.
8. What do you mean by moving charged particle? Describe electromagnetic $(1+9=10)$ field of a uniformly moving charge particle.

$$
==* * *==
$$

M.Sc. MATHEMATICS
 THIRD SEMESTER
 SPECIAL THEORY OF RELATIVITY MSM-305 A

[PART-A : Objective]

Choose the correct answer from the following

1. An example of Uniform Relative motion is
a. A Train moving in a certain direction with a certain speed relative to others.
b. A Train starts from rest.
c. The earth is moving around the Sun.
d. A ball drawn downwards.
2. $\sigma=\frac{N e}{l_{0}^{3} \sqrt{1-\frac{u^{2}}{c^{2}}}}$ is called:
a. Current density
b. Electric coefficient
c. Charge density
d. Both (i) and (ii)
3. In electromagnetic equation $\mathcal{C}=$?
a. $\frac{1}{\sqrt{\mu_{0}}}$
b. $\frac{2}{\sqrt{\mu_{0}}}$
c. $\frac{2}{\sqrt{\mu_{0}} \varepsilon_{0}}$
d. $\frac{1}{\sqrt{\mu_{0}} \varepsilon_{0}}$
4. "Light is electromagnetic phenomenon"-result of:
a. Galilean Transformation
b. Maxwell's law
c. Lorentz Transformation
d. Uniform motion
5. $\frac{\partial F_{\mu \nu}}{\partial x_{\nu}}=j_{\mu}$ is called:
a. Lorentz Equation
b. Lorentz force equation
c. Maxwell's equation
d. Maxwell's $2^{\text {nd }}$ equation
6. Momentum of a body is:
a. $\quad P=m$
b. $\quad \mathrm{P}=\mathrm{mu}$
c. both of these
d. $E=m c^{2}$
7. According to Galilean Transformation:
a. $\quad x^{\prime}=x-v t$
b. $\quad x=x+v t$
c. $x^{\prime}=v t$
d. $\quad x^{\prime}=t$
8. $g^{\mu \nu} g_{v \alpha}=$?
a. g_{v}^{α}
b. g_{μ}^{ν}
c. g_{v}^{μ}
d. g_{α}^{v}
9. The four dimensional force F^{μ} is called:
a. Lorentz force
b. Minkowski's force
c. Four-dimensional vector
d. None of these
10. $m-m_{0}$ is called:
a. Rest mass
b. Total mass
c. Dynamic mass
d. Kinetic mass
11. Michelson Morley experiment gives:
a. Non existence of ether.
b. Existence of ether.
c. Correction of Einstein's Rejection.
d. None of the above.
12. Electromagnetic energy momentum tensor is:
a. $\quad T^{\alpha}{ }_{v}=\frac{1}{4} g^{\alpha}{ }_{v}\left(F_{\mu \beta} F^{\mu \beta}\right)-F_{\mu v} F^{\mu \alpha}$
b. $\quad T^{\alpha}{ }_{\nu}=\frac{1}{4} g^{\alpha}{ }_{\nu}\left(F_{\mu \beta} F^{\mu \beta}\right)+F_{\mu \nu} F^{\mu \alpha}$
c. $\quad T^{\alpha}{ }_{\nu}=-\frac{1}{4} g^{\alpha}{ }_{\nu}\left(F_{\mu \beta} F^{\mu \beta}\right)+F_{\mu \nu} F^{\mu \alpha}$
d. $\quad T^{\alpha}{ }_{v}=-\frac{1}{3} g^{\alpha}{ }_{\nu}\left(F_{\mu \beta} F^{\mu \beta}\right)+F_{\mu \nu} F^{\mu \alpha}$
13. Covariant electromagnetic tensor denoted by:
a. F
b. F_{μ}
c. $F_{\mu \nu}$
d. Uniform motion
14. Maxwell's first equation is:
a. $\frac{\partial F_{\mu \nu}}{\partial x^{\alpha}}+\frac{\partial F_{\nu \alpha}}{\partial x^{\mu}}+\frac{\partial F_{\alpha \mu}}{\partial x^{\nu}}=0$
b. $\frac{\partial F_{\mu \nu}}{\partial x^{\alpha}}+\frac{\partial F_{\nu \alpha}}{\partial x^{\mu}}+\frac{\partial F_{\alpha \mu}}{\partial x^{\nu}} \neq 0$
c. $\frac{\partial F_{\mu \nu}}{\partial x^{\alpha}}+\frac{\partial F_{v \alpha}}{\partial x^{\mu}}-\frac{\partial F_{\alpha \mu}}{\partial x^{v}} \neq 0$
d. $\frac{\partial F_{\mu v}}{\partial x^{\alpha}}+\frac{\partial F_{v \alpha}}{\partial x^{\mu}}-\frac{\partial F_{\alpha \mu}}{\partial x^{\nu}}=0$
15. Principle of Relativity deals with:
a. Non-Uniform motion
b. Relative motion
c. Uniform motion
d. Absolute motion
16. Galilean Transformation gives:
a. Maxwell's law
b. Newtan's law
c. Both
d. None of these
17. Gauss's law in magnetism is one of the law of:
a. Law of electromagnetism.
b. Gauss law in electricity.
c. Maxwell's law of electromagnetic induction.
d. None of the above.
18. According to principle of Relativity:
a. Velocity of light not constant.
b. Speed of light is Universal constant
c. Ethar exist.
d. None of the above.
19. In Lorentz Force Equation $F=q_{0}(E+u B)$
a. $\quad B$ represent magnetic force.
b. B represent magnetic field.
c. Both (i) and (iii).
d. B represent electric field.
20. $v=\frac{v^{\prime}\left(1+\frac{v}{c} \cos \theta^{\prime}\right)}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ is called:
a. Relativistic equation.
b. Relativistic equation for aberration of light.
c. Relativistic equation for Doppler effect.
d. None of these.

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA

[PART (A) : OBJECTIVE]
Duration : 20 Minutes

Serial no. of the main Answer sheet
\qquad
Course : \qquad

Semester : \qquad Roll No :

Enrollment No : \qquad Course code : \qquad

Course Title : \qquad

Session : \qquad 2017-18 \qquad Date : \qquad in
年
年

Instructions / Guidelines
$>$ The paper contains twenty (20) / ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
$>$ Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

Full Marks		
20		Marks Obtained

