M.Sc. MATHEMATICS THIRD SEMESTER CONTINUUM MECHANICS & HYDRODYNAMICS MSM-304

Duration: 3 Hrs.

Marks: 70

Marks: 50

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

1.	Deduce Navier Stoke's equation. Prove Kelvin's circulation theorem.	(5+5=10)
2.	Explain viscous fluid and perfect fluid. Deduce Euler's equation of motion.	(4+6=10)
3.	Explain the Generalised Hooke's Law for istropic elastic body.	(10)
4.	The stress tensor at a point is given by $\sigma_{ij} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & \sigma_{22} & 1 \\ 2 & 1 & 0 \end{pmatrix}$.	(5+5=10)
	Determine σ_{22} so that the stress vector on the same plane at the given point will be zero. Explain the stress quadric of Cauchy.	
5.	A displacement field is given by $x_1 = X_1 + Ax_2$, $x_2 = X_2 + Ax_3$, $x_3 = X_3 + Ax_1$. Calculate the Lagrangian linear strain tensor and Eulerian linear strain tensor. Compare them to the case when A is small.	(5+5=10)
6.	Explain the continuum concept. Deduce the relationship between stress vector and stress tensor.	(4+6=10)
7.	Explain the material and spatial methods of description of analysis of strain. Write about small deformation theory.	(8+2=10)
8.	Explain body force and surface force. Deduce Euler's equation of motion.	(2+8=10)

REV-00 MSM/17/22

M.Sc. MATHEMATICS THIRD SEMESTER CONTINUUM MECHANICS & HYDRODYNAMICS MSM-304

[PART-A : Objective]

Choose the correct answer from the following:

- 1. Inertia force is an example of:
 - a. Surface force
 - b. Body force
 - c. Both of them
 - d. None of them
- 2. A material having identical property at all points is _____property.
 - a. Isophagus
 - b. Eulerian
 - c. Homogeneous
 - d. None of these
- 3. A property which is directional at a point is known as_____
 - a. Unhomogeneous
 - b. Anisophagus
 - c. Anisotropic
 - d. None of them
- 4. In Continuum concept, the components perpendicular to the plane are:
 - a. Traction stresses
 - b. Unit stresses
 - c. Shear stresses
 - d. Normal stresses
- 5. We define ______ as the possible pairs of traction vector and unit normal.
 - a. Cauchy stress
 - b. Stress principle
 - c. State of stress
 - d. All of these

6. The equation $||\sigma_{ij} - \delta_{ij}\sigma| = 0$ upon expansion gives a polynomial.

- a. Biquadratic
- b. Quadratic
- e. Quadric
- d. Cubic

- 7. The principal directions of Deviator Stress tensor are the same as those of_
 - a. Unit vector
 - b. Normal tensor
 - c. Stress vector
 - d. None of these
- The magnitude of normal stress component in quadric surface of Cauchy is_ to γ².
 - a. Inversely proportional.
 - **b.** Directly proportional.
 - c. Equal.
 - d. None of these.

9. In the three equation of $(\sigma_{ij} - \delta_{ij}\sigma)n_i = 0$, there are _____ unknown.

- a. Three
- b. Five
- c. Six
- d. None of these
- 10. Stress tensor is_____

a. Equivalent

- b. Asymmetric
- c. Symmetric
- d. None of these
- 11. A necessary and sufficient condition for the inverse function to exist is Jacobian _
 - a. Vanishes.
 - b. Does not vanish.
 - c. Both of them.
 - d. None of them.

^{12.} $C_{ij} = \frac{\partial X_k}{\partial x_i} \frac{\partial X_k}{\partial x_j}$ is called the:

- a. Undeformed tensor.
- b. Green's deformation tensor.
- c. Cauchy's deformation tensor.
- d. All of these.

^{13.} $G_{ij} = \frac{\partial x_k}{\partial x_i} \frac{\partial x_k}{\partial x_j}$ is called the:

- a. Undeformed tensor.
- b. Green's deformation tensor.
- c. Cauchy's deformation tensor.
- d. All of these.

2017/12

1×20=20

14.
$$\frac{1}{2} \left(\frac{\partial x_k}{\partial x_i} \frac{\partial x_k}{\partial x_j} - \delta_{ij} \right)$$
 is equal to:
a. δ_{ij}
b. L_{ij}
c. E_{ij}
d. All of these
15. $\frac{1}{2} \left(\delta_{ij} - \frac{\partial x_k}{\partial x_i} \frac{\partial x_k}{\partial x_j} \right)$ is equal to:
a. δ_{ij}
b. L_{ij}
c. E_{ij}
d. All of these
16. For all of these

16. For small deformation theory we have

- a. $l_{ij} = C_{ij}$ b. $l_{ij} = e_{ij}$ c. $l_{ij} \neq c_{ij}$ d. $l_{ij} \neq C_{ij}$
- 17. A homogeneous material is one having_____ proposition in all directions.
 - a. Dissimilar b. Unidentical
 - c. Identical d. None of these
- 18. For incompressible flow, with fluid velocity q, the equation of continuity is:
 - a. Curl. q is zero.
 - **b.** Grad q is zero.
 - **c.** Div q is zero.
 - d. None of these.
- From the law of conservation of mass, the mass contained inside a given volume of fluid remains throughout the motion.
 - a. Changing.
 - b. Unchanged.
 - c. Changes time to time.
 - d. None of these.
- 20. A fluid motion in which the flow pattern remains unchanged with time is said to be:
 - a. Unsteady b. Steady
 - c. Laminar d. Turbulent

 UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

 Image: Image

Course Title :

Session : 2017-18

Date :

Instructions / Guidelines

- > The paper contains twenty (20) / ten (10) questions
- > Students shall tick (\checkmark) the correct answer.
- > No marks shall be given for overwrite / erasing.
- Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained
20	

= = *** = =