2017/12

M.Sc. MATHEMATICS THIRD SEMESTER FUNCTIONAL ANALYSIS MSM-302

Duration: 3 Hrs.

REV-00

MSM/17/22

Marks: 70

Marks: 50

PART : A (OBJECTIVE) = 20 PART : B (DESCRIPTIVE) = 50

[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

4. Let *P* be a projection on a Banach space *X*. Then show that (5+5=10) (i) *I* − *P* is a projection on *X*(ii) *R*(*P*) = {*x* ∈ *X* : *Px* = *x*} (iii) *R*(*P*) = *N*(*I* − *P*) (iv) *X* = *R*(*P*) ⊕ *N*(*I* − *P*)

(v) If P is bounded then R(P) and R(I - P) are closed.

5. (i) Define isometric isomorphism and homeomorphism. (4+6=10) (ii) Prove that the translation T_a: X → X such that T_a(x) = a + x is a homeomorphism.

- 6. Prove that:
 - (i) A compact subset M of a normed linear space is closed and bounded.
 - (ii) A subspace M of a Banach space X is a Banach space iff M is closed in X.
- Define orthogonal set. If M and N are closed linear subspaces of a Hilbert (2+8=10) space H such that M⊥N, then prove that the linear subspace M+N is also closed.

(5+5=10)

8. Define perpendicular projection. If P is a bounded projection on H with (2+8=10) R(P)=M and N(P)=N, then $M \perp N \Leftrightarrow P$ is self adjoint and N= M^{\perp}

= = *** = =

REV-00 ' MSM/17/22

M.Sc. MATHEMATICS THIRD SEMESTER FUNCTIONAL ANALYSIS MSM-302

[PART-A: Objective]

Choose the correct answer from the following:

1×20=20

2017/12

- 1. Let N be a normed linear space and $x, y \in N$, then which of the following is true?
 - a. $|||x|| ||y||| \ge ||x y||$
 - b. $||| x || || y ||| \le || x y ||$
 - c. ||| x || || y ||| = || x y ||
 - d. None of these
- 2. In a normed linear space:
 - a. || x || = || x ||
 - b. || x || = || x ||
 - c. $\| -x \| = |x|$
 - d. None of these
- 3. A linear transformation $T : (X, \| . \| \to (Y, \| . \|))$ is continuous if T is:
- a. Bounded
 - b. Unbounded
 - c. Open map
 - d. None of these
- 4. A normed linear space X is said to be compact if every sequence in X has a:
 - a. Convergent subsequence.
 - b. Divergent subsequence.
 - c. May or may not have a convergent subsequence.
 - d. None of these.
- 5. The identity operator on a normed linear space is:
 - a. Bounded.
 - b. Unbounded.
 - c. May or may not be bounded.
 - d. None of these.
- 6. If T is continuous at the origin, then there exists a real number K such that for all $x \in N$
 - **a.** || T(x) || = K || x ||
 - c. $|| T(x) || \le K || x ||$
- **b.** $|| T(x) || \ge K || x ||$ **d.** None of these

- 7. A compact subset M of a normed linear space is:
 - a. Open and bounded.
 - **b.** Closed and bounded.
 - c. Closed and unbounded.
 - d. None of these.
- 8. Every finite dimensional normed linear space is:
 - a. Reflexive
 - b. Not reflexive
 - c. Compact
 - d. None of these
- 9. A map $F : (X, \|.\|) \to (Y, \|.\|)$ is called an isometry if:
 - a. ||x y|| = ||F(y) F(x)||
 - **b.** || x y || = || F(x) F(y) ||
 - c. || y x || = || F(x) F(y) ||
 - d. None of these
- 10. Let B and B' be the Banach spaces and T is a continuous linear mapping from B onto
 - B', then T is a/an:
 - a. Open map.
 - b. Closed map.
 - c. Closed and Bounded map.
 - d. None of these.
- 11. The product of two bounded self-adjoin linear operators S and T on a Hilbert space H is self- adjoint if and only if the operators:
 - a. Commute
 - b. Equal
 - c. Similar
 - d. None of these
- 12. A linear operator P on Banach space is said to be a projection if and only if:
 - a. $P = P^*$
 - **b.** $P = P^2$
 - $\mathbf{c}. \quad PP \quad ^{*} = P \quad ^{*}P$
 - d. None of these
- **13.** A bounded linear operator $T: H \to H$, on a Hilbert space H is unitary if T is
 - and $T^* = \dots$
 - **a.** bijective, $T^* = T^2$
 - **b.** bijective, $T^* = T^{-1}$
 - c. bijective, $TT^* = T^*T$
 - d. None of these

- 14. Let $T: H \to H$ be a bounded linear operator on a Hilbert space H. If H is complete and $\langle Tx, x \rangle$ is real for all $x \in H$, the operator T is:
 - a. Bijectiveb. Unitaryc. Normald. Sefl-adjoint

15. Let $T: H_1 \to H_2$ be a bounded linear operator, where H_1 and H_2 are Hilbert

spaces. Then the Hilbert adjoint operator T^* of T is the operator $T^*: H_2 \to H_1$ such that $\forall x \in H_1$ and $y \in H_2$, $\langle Tx, y \rangle = \dots$

- **a.** $< x, T^{-1}y >$
- **b.** < x, Ty >
- c. $< x, T^* y >$
- d. None of these
- 16. A non-empty subset A of a Hilbert space H is said to be orthonormal if and only if $\forall x, y \in A$
 - a. $\langle x, y \rangle = 1, \langle x, x \rangle = 0$
 - **b.** $\langle x, y \rangle = 0, \langle x, x \rangle = 1$
 - c. $\langle x, y \rangle = 0, \langle x, x \rangle = 0$
 - d. None of these
- 17. If M is closed subspace of a Hilbert space H, then:
 - a. $H = M \oplus M^{\perp}$
 - **b.** $H = M^{\perp}$
 - c. $H = M + M^{\perp}$
 - d. None of these
- 18. A closed convex subset C of a Hilbert space H contains a unique vector of:
 - a. largest norm b. zero norm
 - c. smallest norm d. None of these
- ^{19.} The space l^p with $p \neq 2$, is not an inner product space and hence is:
 - a. a Hilbert space b. a Banach space
 - c. not a Hilbert space d. One of these

20. In a Hilbert space H, if s, s_1, s_2 are subsets of H, then:

- **a.** s^{\perp} is a closed subspace of H
- **b.** s^{\perp} is a Banach space
- c. $S \subseteq S^{\perp}$
- d. None of these

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

	[PART (A) : OBJECTIVE] Duration : 20 Minutes	Serial no. of the main Answer shee
ourse:		
emester :	Roll No :	
nrollment No :	Course code :	
ourse Title :		
ession : 201	17-18 Date :	
*****	Instructions / Guidelines	
The paper containStudents shall tick	ns twenty (20) / ten (10) questions. < (✓) the correct answer.	
No marks shall beStudents have to s	e given for overwrite / erasing. submit the Objective Part (Part-A) to the inv	igilator just after

20

145.7.0