M.Sc. MATHEMATICS SECOND SEMESTER LINEAR ALGEBRA MSM-203

Duration: 3 Hrs.

Marks: 70

 $\begin{cases} Part : A (Objective) = 20 \\ Part : B (Descriptive) = 50 \end{cases}$

[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

1. Define subspace of a vector space. The union of two subspaces of a vector space is a subspace if and only if one is contained in the other.

(3+7=10)

2. (a) State and prove the Cayley Hamilton theorem.

(2+6+2=10)

(b) Verify this theorem for the following matrix.

 $\binom{2}{5} - \binom{3}{1}$

3. (a) Define adjoint operator.

(2+2+2+2+2=10)

- (b) Prove the following:
 - (i) $(T+S)^* = T^* + S^*$
 - (ii) $(\alpha T)^* = \bar{\alpha} T^*$
 - (iii) $(TS)^* = S^*T^*$
 - (iv) $(T^*)^* = T$
- 4. (a) Define linear dependence and linear independence of vectors,

(2+2+6=10)

- (b) Examine the linear dependence or independence of the set of vectors $S=\{(1,1,1), (1,1,0), (1,0,0)\}$ of $V_3(R)$.
- 5. (a) State the Gram Schmidt Orthogonalization theorem.

(3+7=10)

(b) Apply Gram Schmidt Orthogonalization process to the vectors $\beta_1 = (1,0,1)$, $\beta_2 = (1,0,-1)$, $\beta_1 = (0,3,4)$ to obtain an orthonormal basis

for $V_3(R)$ with standard inner product.

(a) Let $M = \begin{pmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \\ & & 5 & 1 \\ & & & 5 & 1 \\ & & & 5 & 1 \\ & & & 5 & 5 \\ & & & & 5 & 1 \end{pmatrix}$

(5+5=10)

Find the characteristic polynomial and minimal polynomial of M. (b) Suppose the characteristic polynomial and minimal polynomial of an operator T are respectively

$$\Delta(t) = (t-2)^4(t-3)^3$$
 and $m(t) = (t-2)^2(t-3)^2$

Find all possible Jordan Cannonical form with these conditions.

7. (a) Define bilinear form of a vector space.

(4+6=10)

(2+2+2+4=10)

(b) Let
$$f$$
 be a bilinear form in \mathbb{R}^2 defined by $f(x_1, x_2), (y_1, y_2) = x_1y_1 + x_2y_2$

Find the matrix of f in each of the ordered basis $\{(1,-1),(1,1)\}$

- 8. (a) Define self adjoint operator, unitary operator and normal operator.
 - (b) If U is a linear operator on an inner product space V(K), then show that the following conditions are equivalent
 - (i) $U^* = U^{-1}$
 - (ii) $UU^* = U^*U = I$
 - (iii) $\langle U(u), U(v) \rangle = \langle u, v \rangle$, for all $u, v \in V$

= = *** = =

REV-00
MSM/17/22

2017/06

7. Consider the following:

M.Sc. MATHEMATICS SECOND SEMESTER LINEAR ALGEBRA MSM-203

[PART-A: Objective]

Choose 1	the correct	answer from	the following

d. $|\langle u, v \rangle| \ge ||v|| / ||u||$

1X20=20

1.	A non empty subset W of a vector space V(F) is subspace of V if for $\alpha, \beta \in F$ an	d
	$x,y \in W$	
	a. $\alpha + \beta \in F$ b. $\alpha x + \beta y \in W$	
	c. $\alpha x + \beta \in W$ d. $\alpha + \beta y \in W$	
2.	If V is a vector space over the field K and $x, y \in V$, $\alpha \in K$, then which of the	
	following is false	
	a. $\alpha \overline{0} = \overline{0}$	
	b. $\alpha(-x) = -\alpha x$	
	c. $x + y = x + z \Rightarrow x = z$	
	$\mathbf{d.} \alpha(x-y) = \alpha x - \alpha y$	
3.	The co-efficient of highest degree term of a monic polynomial is	
	a. 0 b.1 c.2 d.3	
4.	A linear operator T on an inner product space V(K) is called self adjoint if	
	a. $\langle T(u), v \rangle = \langle v, T(u) \rangle$, for all $u, v \in V$	
	b. $\langle T(u), v \rangle = \langle u, T(v) \rangle$, for all $u, v \in V$	
	c. $\langle T(u), v \rangle = \langle v, u \rangle$, for all $u, v \in V$	
	d. $\langle T(u), v \rangle = \langle u, v \rangle$, for all $u, v \in V$	
5.	The singleton set {v} is linearly independent iff	
	a. $v = 0$	
	b. v ≠ 0	
	c. v is scalar	
	d. None of these	
6	Let V be a vector space over a field F and $u, v \in V$, $\alpha \in F$, then which of the	
0.	following is true	
	a. $ \langle u, v \rangle \ge u v $	
	b. <u, v=""> ≤ u v </u,>	
	c. < u, v > ≥ u / v	

	(i) Let R be the field of real numbers and $W = \{(x, y, z) x, y, z \in R\}$	
	(ii) Let R be the field of real numbers and $W = \{(x, y, z)\} x, y, z \in Q$, where Q is the set of rational numbers.	
	Which of these is a vector space of $V_2(R)$?	
	a. Only(i) b. Only(ii)	
	c. Both (i) and (ii) d. Neither (i) nor (ii)	
8.	If $T: U \to V$ is a linear transformation, then the range of T is defined as	
	a. $\{y \in V: T(x) = y: for some x \in U\}$	
	b. $\{x \in U: T(x) = \overline{0}: for some \overline{0} \in V\}$	
	c. $\{y \in V: T(x) = -x: for some x \in U\}$	
	d. None of these	
9.	If $\lambda \neq 0$ is an eigen value of an invertible operator T, then the eigenvalue of T^{-1} is	
	a. λ b. λ^{-1} c. 0 d. 1	
10	If V is an inner product space, then for $u(\neq 0) \in V$,	
	a. $ u \le 0$ b. $ u \ge 0$	
	c. u = 0 d. u > 0	
11	The dimension of null space of a linear transformation T is called	
	a. Rank(T) b. Nullity(T)	
	c. Range(T) d. None of these	
12.	If A is a matrix of order n, then A is invertible if and only if	
	a. $A \neq 0$ b. $A^{-1} = 0$	
	c. $ A \neq 0$ d. $ A = 0$	
13	Let $u = (x_1, x_2, x_3)$, $v = (y_1, y_2, y_3)$ and	
	$f(u, v) = 3x_1y_1 - 2x_1y_2 + 5x_2y_1 + 7x_2y_2 - 8x_2y_2 + 4x_2y_2 - x_2y_3$, then the matrix	
	representation A of f is	
	a. $A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \\ 3 & 2 & 0 \end{pmatrix}$	
	(3 2 0)	
	b. $A = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 2 & -1 \\ 3 & 0 & 0 \end{pmatrix}$ c. $A = \begin{pmatrix} 3 & -2 & 0 \\ 5 & 7 & -8 \\ 0 & 4 & -1 \end{pmatrix}$	
	$\begin{pmatrix} 3 & 0 & 0 \end{pmatrix}$	Ш
	$A = \begin{pmatrix} 5 & 7 & -8 \\ 0 & 4 & 4 \end{pmatrix}$	
	d. None of these	
14	. If T is a linear operator on a finite dimensional vector space V and scalar c is an	
	eigen value of T, then	
	a. $det(T-cI) \neq 0$	
	b. $\det(T - cI) = 0$	
	c. $det(T - cI) > 0$ d. $det(T - cI) < 0$	
	u. ucu, 1 - 11) < 0	

15. Let V be an inner product space over a field F and $u \in V$, $\alpha \in F$. Which of the
following is true
a. au > a u
b. $\ \alpha u\ < \ \alpha\ \ u\ $ c. $\ \alpha u = \alpha u $
d. None of these
16. $\begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \end{pmatrix}$, then the characteristic polynomial for A is
Let $A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$, then the characteristic polynomial for A is
a. $x^2 + 5x^2 + 8x + 4$
b. $x^3 + 5x$ c. $x^3 - 5x^2 + 8x - 4$
d. None of these
 A linear operator on an inner product space V(K) is said to be unitary if and only if a. TT* = T*T
b. $TT^{\circ} = T^{-1}$
c. $T^* = T^{-1}$
d. None of these
18. (2 1 0)
18. If $A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$, then the minimal polynomial of A is
a. $(t - \lambda)$ b. $(t - \lambda)^2$ c. $(t - \lambda)^3$
$c. (t-\lambda)^3$
d. None of these
19. A bilinear form f on a vector space V(K) is said to be anti symmetric if for all
<i>u, v</i> ∈ <i>V</i>
a. $f(u,v) = -f(v,u)$
b. $f(u, v) = f(v, u)$
c. $f(u, v) = f(0, v)$ d. None of these
d. None of these
20. Let U be a linear operator on any inner product space V(K) and ▮ U ▮=▮ u ▮, for all
$u \in U$, then which of the following is correct.
a. $U^* = U$ b. $U^* = I$
$\begin{array}{ccc} & & & & & & & \\ & & & & & & \\ & & & & $
d. None of these

== *** ==

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

Scrutinizer's Signature

Question Paper CUM Answer Sheet

[PART (A) : OBJECTIVE]

Serial no. of the main
Answer sheet

Invigilator's Signature

Course	!		
Semest	er:		Roll No:
E11-	N		
Enrolli	nent No:		Course code :
Course	Title:		
Course			
Session	1: 2	016-17	Date :
Debbioi	• • • • • • • • • • • • • • • • • • • •		Bute:

		Instructions / C	Guidelines
>	The paper contain	as twenty (20) / ten (10) que	stions.
>	The student shall v	vrite the answer in the box v	where it is provided.
> The student shall not overwrite / erase any answer and no mark shall be given for such act.			
>		uestion paper cum answer	sheet (Objective) within the allotted time
		minutes) to the invigilator.	
	Full Marks	Marks Obtained	Remarks
	20		
A. Taraba			

Examiner's Signature