REV-00 MSM/17/22

M.Sc. MATHEMATICS SECOND SEMESTER **REAL ANALYSIS & LEBESGUE MEASURE MSM-201**

[PART-A : Objective]

Choose the correct answer from the following:

1X20=20

2017/06

- 1. A sequence $\{f_m\}$ of functions is said to converge uniformly on X to a function f if for every $\varepsilon > 0$, we have
 - a. $|f_n(x) + f(x)| > \varepsilon$
 - b. $|f_n(x) + f(x)| < \varepsilon$
 - c. $|f_n(x) f(x)| < \varepsilon$
 - d. None of these
- 2. Let (X, d) be a metric space and $s = \{s_n\}$ be a sequence in X. Then s is said to be ain X iff for every $\varepsilon > 0$, there exists a positive integer m(ε) such that $p \ge m(\varepsilon) \& n \ge m(\varepsilon) \Longrightarrow d(s_p, s_n) < \varepsilon$
 - a. Monotonic sequence b. Cauchy sequence c. Convergent sequence d. Divergent sequence
- 3. A sequence $\{f_n\}$ of real valued functions defined on a metric space X is said to be uniformly bounded on X if
 - a. $|f_n(x)| = M$ b. $|f_n(x)| > M$ c. $|f_n(x)| < M$
 - d. $|f_n(x)| = 0$
- 4. By Weirestrass's M Test the given series $cosx + \frac{cos2x}{2^2} + \frac{cos2x}{2^2} + \cdots$ will
 - b. converge uniformly a. diverge uniformly c. both of these d. None of these
- 5. Let $f_n(x) = x^{1/n}$ for $x \in [0, 1]$. Then
 - a. $\lim_{n \to \infty} f_n(x)$ exists for all $x \in [0,1]$.
 - **b.** $\{f_n\}$ converges uniformly on [0,1]
 - c. $\lim_{n \to \infty} f_n(x)$ defines a continuous function on $x \in [0, 1]$.
 - d. $\lim_{n\to\infty} f_n(x) = 0$ for all $x \in [0,1]$.
- 6. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

a. Does not converge c. Converges to 2

b. Converges to 1 d. None of these

- 7. The function $f(x) = \frac{1}{2}, x > 0$ is
 - a. continuous but not uniformly continuous.
 - b. uniformly continuous but not continuous.
 - c. neither continuous nor uniformly continuous.
 - d. discontinuous everywhere.
- 8. In properties of Lebesgue integral for bounded measurable function f on [a,b], if A₂ is a finite or infinite sequene of disjoint measurable subsets of [a,b] whose union A has finite measure, then
 - **b.** $\int f = \sum_{k} \int f$ a. $\int f = 0$ d. $\int f = -\sum_{k} \int f$ c. $\int f = 1$
- 9. If f is Lebesgue integrable, then

a.	$\left \int_{a}^{b} f\right \geq \int_{a}^{b} f $	b. $\left \int_{a}^{b} f\right \geq -\int_{a}^{b} \ f\ $
c.	$\int_{a}^{b} f \ge \left \int_{a}^{b} f \right $	$\mathbf{d}.\left \int_{a}^{b}f\right < \int_{a}^{b} f $

- 10. Every upper Riemann integral isevery upper Lebesgue integral.
 - b. greater than or equal to a. equal to
 - c. less than or equal to d. less than
- 11. If *f* is a function of bounded variation, then 1/*f* is also a function of bounded variation if for a positive integer k, _
 - a. $|f(x)| \leq k$
 - b. $|f(x)| \ge k$
 - c. |f(x)| = k
 - d. |f(x)| < k
- 12. Let f(x) = sinx, then the total variation of f in $[0, \pi/2]$ is
 - a. 0 b.1 c. 2 d. 3
- 13. Which of the following statement is true?
 - a. A bounded monotonic function is a function of bounded variation.
 - b. If f is a function of bounded variation on [a, b], then it is not a function of bounded variation on [a, c] and [c, b].
 - c. The product of two functions of bounded variation is not necessarily a function of bounded variation.
 - d. All of the above.
- 14. If f is R-S integrable in [a, b], then which of the following is true
 - a. $\int_a^b f d\alpha > \int_a^b f d\alpha$ b. $\int_{a}^{b} f da < \int_{a}^{b} f da$ c. $\int_a^b f d\alpha = \int_a^b f d\alpha$
 - d. None of these

15. $\int_{0}^{2} x^{2} dx^{2}$ will be equal to a. 2 b. 4 c. 6 d. 8 16. If *f* is a function of bounded variation in [*a*, *b*], then a. $V(f; a, b) \ge |f(a) - f(b)|$ with respect to the partition {*a*, *b*} b. $V(f; a, b) \le |f(a) - f(b)|$ with respect to the partition {*a*, *b*} c. $V(f; a, b) \ge |f(b) - f(a)|$ with respect to the partition {*a*, *b*} d. $V(f; a, b) \le |f(b) - f(a)|$ with respect to the partition {*a*, *b*} d. $V(f; a, b) \le |f(b) - f(a)|$ with respect to the partition {*a*, *b*} d. $V(f; a, b) \le |f(b) - f(a)|$ with respect to the partition {*a*, *b*} d. $V(f; a, b) \le |f(b) - f(a)|$ with respect to the partition {*a*, *b*} d. $V(f; a, b) \le |f(b) - f(a)|$ with respect to the partition {*a*, *b*}

17. If *f* is R-S integrable and α is monotonic increasing function on [a, b] such that $\alpha^{/}$ is also R-S integrable, then which of the following holds

a.
$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha'$$
$$\int_{a}^{b} f d\alpha > \int_{a}^{b} f d\alpha'$$
c.
$$\int_{a}^{b} f d\alpha < \int_{a}^{b} f d\alpha'$$

- 18. If *f* is a function of bounded variation on [a, b] and $x \in [a, b]$, then the total variation function V(f; a, x) is a_____
 - a. Monotonic decreasing function
 - b. Monotonic increasing function
 - c. Step function
 - d. Constant function
- 19. Let P_1 and P_2 be two partitions of [a, b] and P^* is their common refinement, then which of the following will hold

a. $P^* = P_1 \cap P_2$

- b. $P^* = P_1 \cup P_2$ c. $P^* = P_1 + P_2$
- d. $P^* = P_1 P_2$
- If *f* and *α* are bounded functions on [*α*, *b*] and *α* is a monotonic increasing function on [*α*, *b*], then

= = *** = =

a.
$$\int_{\alpha}^{b} f d\alpha = \inf U(P, f, \alpha)$$

b.
$$\int_{\alpha}^{b} f d\alpha = \sup L(P, f, \alpha)$$

c.
$$\int_{\alpha}^{b} f d\alpha = U(P, f, \alpha)$$

d.
$$\int_{\alpha}^{b} f d\alpha = L(P, f, \alpha)$$

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

Uncerting Lexilinat	Question Paper CUM Answer Sheet [PART (A) : OBJECTIVE]	Serial no. of the main Answer sheet		
Course :				
emester :	Roll No :			
nrollment No :	Course code :			
Course Title :				
ession :	2016-17 Date :			
	Instructions / Guidelines			
> The paper co	ntains twenty (20) / ten (10) questions.			
> The student shall write the answer in the box where it is provided.				
The student shall not overwrite / erase any answer and no mark shall be given for such act.				
Hand over the question paper cum answer sheet (Objective) within the allotted time (20 minutes / 10 minutes) to the invigilator.				

Full Marks	Marks Obtained	Remarks
20		

Scrutinizer's Signature