M.Sc. MATHEMATICS
 SECOND SEMESTER REAL ANALYSIS \& LEBESGUE MEASURE MSM-201

[PART-A: Objective]

Choose the correct answer from the following:

1. A sequence $\left\{f_{n}\right\}$ of functions is said to converge uniformly on X to a function f if for every $\varepsilon>0$, we have
a. $\left|f_{n}(x)+f(x)\right|>\varepsilon$
b. $\left|f_{n}(x)+f(x)\right|<\varepsilon$
c. $\left|f_{n}(x)-f(x)\right|<\varepsilon$
d. None of these
2. Let (X, d) be a metric space and $s=\left\{s_{n}\right\}$ be a sequence in X. Then s is said to be a
\qquad .in X iff for every $\varepsilon>0$, there exists a positive integer $\mathrm{m}(\varepsilon)$ such that $p \geq m(\varepsilon) \& n \geq m(\varepsilon) \Rightarrow d\left(s_{p}, s_{n}\right)<\varepsilon$
a. Monotonic sequence
b. Cauchy sequence
c. Convergent sequence
d. Divergent sequence
3. A sequence $\left\{f_{m}\right\}$ of real valued functions defined on a metric space X is said to be uniformly bounded on X if
a. $\left|f_{n}(x)\right|=M$
b. $\left|f_{n}(x)\right|>M$
c. $\left|f_{n}(x)\right|<M$
d. $\left|f_{n}(x)\right|=0$
4. By Weirestrass's M Test the given series $\cos x+\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}+\cdots$ willa. diverge uniformly
b. converge uniformly
c. both of these
d. None of these
5. Let $f_{n}(x)=x^{1 / n}$ for $x \in[0,1]$. Then
a. $\quad \lim _{n \rightarrow \infty} f_{n}(x)$ exists for all $x \in[0,1]$.
b. $\left\{f_{n}\right\}$ converges uniformly on $[0,1]$
c. $\lim _{n \rightarrow \infty} f_{n}(x)$ defines a continuous function on $x \in[0,1]$.
d. $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in[0,1]$.
6. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$\begin{array}{ll}\text { a. Does not converge } & \text { b. Converges to } 1\end{array}$
c. Converges to 2
d. None of these
7. The function $f(x)=\frac{2}{x}, x>0$ is
a. continuous but not uniformly continuous
b. uniformly continuous but not continuous.
c. neither continuous nor uniformly continuous
d. discontinuous everywhere.
8. In properties of Lebesgue integral for bounded measurable function f on $[a, b]$, if A_{k} is a finite or infinite sequene of disjoint measurable subsets of $[\mathrm{a}, \mathrm{b}]$ whose union A has finite measure, then
a. $\int f=0$
b. $\int f=\sum_{k} \int f$
c. $\int f=1$
d. $\int f=-\sum_{k} \int f$
9. If f is Lebesgue integrable, then
a. $\left|\int_{a}^{b} f\right| \geq \int_{a}^{b}|f|$
b. $\left|\int_{a}^{b} f\right| \geq-\int_{a}^{b}|f|$
c. $\int_{a}^{b}|f| \geq\left|\left.\right|_{a} ^{b} f\right|$
d. $\left|\left.\right|_{a} ^{b} f\right|<\int_{a}^{b}|f|$
10. Every upper Riemann integral isevery upper Lebesgue integral.
a. equal to
b. greater than or equal to
c. less than or equal to
d. less than
11. If f is a function of bounded variation, then $1 / f$ is also a function of bounded variation if for a positive integer k \qquad
a. $|f(x)| \leq k$
b. $|f(x)| \geq k$
c. $|f(x)|=k$
d. $|f(x)|<k$
12. Let $f(x)=\sin x$, then the total variation of f in $[0, \pi / 2]$ is
a. 0
b. 1
c. 2
d. 3
13. Which of the following statement is true?
a. A bounded monotonic function is a function of bounded variation.
b. If f is a function of bounded variation on $[a, b]$, then it is not a function of bounded variation on $[a, c]$ and $[c, b]$.
c. The product of two functions of bounded variation is not necessarily a function of bounded variation.
d. All of the above.
14. If f is R-S integrable in $[a, b]$, then which of the following is true
a. $\int_{a}^{b} f d \alpha>\int_{\underline{a}}^{b} f d \alpha$
b. $\int_{a}^{b} f d \alpha<\int_{a}^{b} f d a$
c. $\int_{a}^{b} f d \alpha=\int_{\underline{a}}^{b} f d \alpha$
d. None of these
15. $\int_{0}^{2} x^{2} d x^{2}$ will be equal to
a. 2
\square b.
d. 8
16. If f is a function of bounded variation in $[a, b]$, then
a. $V(f ; a, b) \geq|f(a)-f(b)|$ with respect to the partition $\{a, b\}$
b. $v(f ; a, b) \leq|f(a)-f(b)|$ with respect to the partition $\{a, b\}$
c. $V(f ; a, b) \geq|f(b)-f(a)|$ with respect to the partition $\{a, b\}$
d. $V(f ; a, b) \leq|f(b)-f(a)|$ with respect to the partition $\{a, b\}$
17. If f is R-S integrable and α is monotonic increasing function on $[\mathrm{a}, \mathrm{b}]$ such that α^{\prime} is also R-S integrable, then which of the following holds
a. $\int_{a}^{b} f d \alpha=\int_{a}^{0} f d \alpha^{\prime}$
b. $\int_{a}^{b} f d \alpha>\int_{a}^{b} f d a^{\prime}$
c. $\int_{a}^{b} f d \alpha<\int_{a}^{b} f d \alpha$
d. None of these
18. If f is a function of bounded variation on $[a, b]$ and $x \in[a, b]$, then the total variation function $V(f ; a, x)$ is a \qquad
a. Monotonic decreasing function
b. Monotonic increasing function
c. Step function
d. Constant function
19. Let P_{1} and P_{2} be two partitions of $[a, b]$ and P^{*} is their common refinement, then which of the following will hold
a. $P^{*}=P_{1} \cap P_{2}$
b. $P^{*}=P_{1} \cup P_{2}$
c. $P^{*}=P_{1}+P_{2}$
d. $P^{*}=P_{1}-P_{2}$
20. If f and α are bounded functions on $[a, b]$ and α is a monotonic increasing function on $[a, b]$, then
a. $\int_{a}^{b} f d \alpha=\inf U(P, f, a)$
b. $\int_{a}^{b} f d \alpha=\sup L(P, f, \alpha)$
\square c. $\int_{a}^{b} f d \alpha=U(P, f, \alpha)$
d. $\int_{a}^{b} f d a=L(P, f, \alpha)$

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA

Question Paper CUM Answer Sheet
[PART (A) : OBJECTIVE]
Serial no. of the main Answer shect

Course :

Semester:
Roll No :

Enrollment No: \qquad Course code:

Course Title :

Session: \qquad 2016-17 \qquad Date : \qquad

Instructions / Guidelines

The paper contains twenty $(20) / \operatorname{ten}(10)$ questions.
$>$ The student shall write the answer in the box where it is provided.
$>$ The student shall not overwrite / erase any answer and no mark shall be given for such act.
> Hand over the question paper cum answer sheet (Objective) within the allotted time (20 minutes / 10 minutes) to the invigilator.

Full Marks	Marks Obtained	Remarks
20		

