REV-00 MSM/39/44

> M. Sc. MATHEMATICS FIRST SEMESTER LINEAR ALGEBRA MSM - 105

Duration: 3 Hrs.

Marks: 70

2017/12

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

3+4+3= 2 -1 1 10 **1.** Find the characteristic equation of the matrix $A = \begin{vmatrix} -1 & 2 & -1 \end{vmatrix}$. 1 -1 2

Also verify that it is satisfied by A. Determine A^{-1} .

2. Show that

(i) "A linear operator T on the finite dimensional vector space *V* is diagonisable if and only if \exists a basis β of

V consisting of eigen vectors of T."

(ii) "Every complex vector space is a real vector space but the converse is not true."

- 3. Show that the set $S = \{(1,0,0), (1,1,0), (1,1,1), (0,1,0)\}$ generates the 10 vector space $V_3(R)$, but it is not a basis.
- 4. Prove that
 - "If T and S are self adjoint operators on an inner (i) product space V , then TS is self adjoint $\Leftrightarrow TS = ST$.

5×2=10

5×2=10

(ii) "A necessary and sufficient condition that a linear operator T on a complex inner product space V (unitary space) be sefl-adjoint is that $< T(\alpha), \alpha >$ be real for every α .

10

5. Find the eigen values and the corresponding eigen space for the

matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

- 6. State the Gram-Schmidt orthogonalization process .Apply the Gram-Schmidt process to the vectors $u_1 = (1,0,1) u_2 = (1,0,-1) u_3 = (0,3,4)$ to obtain an orthonormal basis for $R^3(R)$ with the standard inner product.
- Reduce to canonical form and find the rank and the index of real
 quadraticform

$$q(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 3x_3^2 - 8x_2x_3 - 4x_3x_1 + 12x_1x_2$$

8. (i) Show that the union of two subspaces is a subspace if and only if one 5+5=10 is contained in the other.

(ii) Show by an example that the union of two subspaces of a vector space V(F) is not necessarily a subspace of V(F).

==***==

REV-00 MSM/39/44

.

2017/12

M. SC	. MATHEMATICS	2
FIR	ST SEMESTER	
Lı	NEAR ALGEBRA	
	MSM - 105	

[PART-A : Objective]

Choose the correct answer from the following :

 $1 \times 20 = 20$

1. Let *T* be a linear operator on R^2 which is represented by $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then *T* has

a.	no eigen value in R	c. two eigen values in R
b.	one eigen value in R	d. None of these

- 2. A linear operator T on the finite dimensional vector space V is diagonisable if and only if $\exists a..., \beta$ of V consisting of eigen vectors of T
 - a. non-zero setc. Basisb. Setd. None of these
- 3. The union of two subspaces....a. Is always a subspaceb. May not be a subspace
- Every vector space has atleast

 One subspace

b. Two subspaces

b. a = 1

- **c.** Three subspaces
- d. Four subspaces

c. Is a null set

d. None of these

- 5. Under what condition on the scalar *a* to the vector (1,1,1) and (1,a,a) forms a basis
 - of $C^{3}(C)$. a. a = 0
 - c. a = -1d. $a = \pm 1$
- 6. Minimal polynomial and characteristic polynomial have same roots, they
 a. are same
 b. may not be same
 c. always different
 d. none of these
- 7. A linear transformation $T: U \rightarrow V$ is non-singular if and only if T is
 - a. One-onec. T is a null spaceb. Ontod. None of these

- 8. A linear transformation T on a finite dimensional vector space is invertable if and only if
 - **a.** T is non-singular
 - **b.** *T* is singular
 - c. T is onto
 - d. None of these
- 9. Every square matrix is its characteristic polynomial.
 a. A zero of
 b. non-zero of
 c. equal to
 d. None of these
- 10. If p(x) is a minimal polynomial, then no polynomial over F which annihilates T has
 a. equal degree than p(x)
 b. higher degree than p(x)
 c. smaller degree than p(x)
 d. None of these
- **11.** A subset S of V(F) is said to be a basis of V(F) if**a.** S is linearly independent**b.** S is linearly dependent**c.** S is a null space**d.** None of these
- 12. If W_1 and W_2 be two subspaces of a finite dimensional vector space V(F), then a. dim $(W_1 + W_2) = \dim W_1 + \dim W_2$
 - **b.** dim $(W_1 + W_2) = \dim W_1 + \dim W_2 + \dim (W_1 \cap W_2)$
 - c. dim $(W_1 + W_2) = \dim W_1 + \dim W_2 \dim (W_1 \cap W_2)$

d. None of these

13. If p(x) is a minimal polynomial, then p(x) is**a.** a characteristic polynomial**b.** a monic polynomial**c.** Singular**d.** Non-singular

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

- 14. Suppose T is a linear operator on an inner product space. Then T is normal if and only if its real and imaginary parts
 - a. Are equal
 - b. Are zero

c. Commute **d.** None of these

- **15.** If |A| = 0, then the rank of A
 - a. Less than the number of variables and the system is linearly dependent
 - b. Less than the number of variables and the system is linearly independent
 - c. Greater than the number of variables and the system is linearly dependent d. None of these
- 16. A subset *W* of a vector space V(F) is a subspace of V(F) if and only if

a. $v_1, v_2 \in W$ and $a, b \in F \Longrightarrow av_1 + bv_2 \in W$

- b. $0 \in W$
- c. W is a null space
- d. None of these
- 17. A complex inner product space is often referred to as a...
 - a. Unitary spacec. Normal spaceb. Euclidean spaced. None of these
- **18.** Trivial subspaces of V are
 - a. V itself
 - b. {0}

- **c.** *V* itself and $\{0\}$ **d.** None of these
- 19. The intersection of arbitrary subspaces of a vector space isof that vector space.
 - a. May not be a subspace
 - b. A subspace
 - c. Normal subspace
 - d. Orthonormal subspace
- **20.** If rank of the co-efficient matrix is same as the number of variables, then the system has a. Non-zero solution
 - **b.** No solution
 - D. NO SOLUTION
 - c. One solutiond. Zero solution

==***==

A Concelling Experiment	[PART (A) : ODuration :		Serial no. of the main Answer sheet
Course :			
Semester :		Roll No :	
Enrollment No :		Course code :	
Course Title :			
Session : 20)17-18	Date :	
*****	*********************	*****	****

Instructions / Guidelines

- > The paper contains twenty (20) / ten (10) questions.
- > Students shall tick (\checkmark) the correct answer.
- > No marks shall be given for overwrite / erasing.
- Students have to submit the Objective Part (Part-A) to the invigilator just after
 - completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained
20	

Scrutinizer's Signature

Examiner's Signature

Invigilator's Signature