M. SC. MATHEMATICS
 FIRST SEMESTER
 Linear Algebra
 MSM-105

Duration: 3 Hrs.

Marks: 70

> Part : A (Objective) $=20$
> Part : $\mathrm{B}($ Descriptive $)=50$
[PART-B: Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$. $\begin{array}{r}3+4+3= \\ 10\end{array}$ Also verify that it is satisfied by A. Determine A^{-1}.
2. Show that
(i) "A linear operator T on the finite dimensional vector space V is diagonisable if and only if $\exists \mathrm{a}$ basis β of V consisting of eigen vectors of T."
(ii) "Every complex vector space is a real vector space but the converse is not true."
3. Show that the set $S=\{(1,0,0),(1,1,0),(1,1,1),(0,1,0)\}$ generates the vector space $V_{3}(R)$, but it is not a basis.
4. Prove that
(i) "If T and S are self adjoint operators on an inner product space V, then $T S$ is self adjoint $\Leftrightarrow T S=S T$.
(ii) "A necessary and sufficient condition that a linear operator T on a complex inner product space V (unitary space) be sefl-adjoint is that $<T(\alpha), \alpha>$ be real for every α.
5. Find the eigen values and the corresponding eigen space for the
matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
6. State the Gram-Schmidt orthogonalization process .Apply the Gram- $2+6=10$ Schmidt process to the vectors $u_{1}=(1,0,1) u_{2}=(1,0,-1) u_{3}=(0,3,4)$ to obtain an orthonormal basis for $R^{3}(R)$ with the standard inner product.
7. Reduce to canonical form and find the rank and the index of real quadraticform

$$
q\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}-8 x_{2} x_{3}-4 x_{3} x_{1}+12 x_{1} x_{2}
$$

8. (i) Show that the union of two subspaces is a subspace if and only if one $\quad 5+5=10$ is contained in the other.
(ii) Show by an example that the union of two subspaces of a vector space $V(F)$ is not necessarily a subspace of $V(F)$.

$$
==* * *==
$$

M. Sc. MATHEMATICS

FIRSTSEMESTER

Linear Algebra
MSM-105

[PART-A: Objective]

Choose the correct answer from the following:
$1 \times 20=20$

1. Let T be a linear operator on R^{2} which is represented by $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Then T has
a. no eigen value in R
c. two eigen values in R
b. one eigen value in R
d. None of these
2. A linear operator T on the finite dimensional vector space V is diagonisable if and only if $\exists a \ldots \ldots \beta$ of V consisting of eigen vectors of T
a. non-zero set
c. Basis
b. Set
d. None of these
3. The union of two subspaces....
a. Is always a subspace
c. Is a null set
b. May not be a subspace
d. None of these
4. Every vector space has atleast
a. One subspace
c. Three subspaces
b. Two subspaces
d. Four subspaces
5. Under what condition on the scalar a to the vector $(1,1,1)$ and $(1, a, a)$ forms a basis of $C^{3}(C)$.
a. $a=0$
b. $a=1$
c. $a=-1$
d. $a= \pm 1$
6. Minimal polynomial and characteristic polynomial have same roots, they
a. are same
c. always different
b. may not be same
d. none of these
7. A linear transformation $T: U \rightarrow V$ is non-singular if and only if T is
a. One-one
c. T is a null space
b. Onto
d. None of these
8. A linear transformation T on a finite dimensional vector space is invertable if and only if
a. T is non-singular
b. T is singular
c. T is onto
d. None of these
9. Every square matrix is
its characteristic polynomial.
a. A zero of
b. non-zero of
c. equal to
d. None of these
10. If $p(x)$ is a minimal polynomial, then no polynomial over F which annihilates T has
a. equal degree than $p(x)$
c. smaller degree than $p(x)$
b. higher degree than $p(x)$
d. None of these
11. A subset S of $V(F)$ is said to be a basis of $V(F)$ if
a. S is linearly independent
c. S is a null space
b. S is linearly dependent
d. None of these
12. If W_{1} and W_{2} be two subspaces of a finite dimensional vector space $V(F)$, then
a. $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$
b. $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\operatorname{dim}\left(W_{1} \cap W_{2}\right)$
c. $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$
d. None of these
13. If $p(x)$ is a minimal polynomial, then $p(x)$ is
a. a characteristic polynomial
c. Singular
b. a monic polynomial
d. Non-singular
14. Suppose T is a linear operator on an inner product space. Then T is normal if and only if its real and imaginary parts
a. Are equal
c. Commute
b. Are zero
d. None of these
15. If $|A|=0$, then the rank of A
a. Less than the number of variables and the system is linearly dependent
b. Less than the number of variables and the system is linearly independent
c. Greater than the number of variables and the system is linearly dependent
d. None of these
16. A subset W of a vector space $V(F)$ is a subspace of $V(F)$ if and only if
a. $v_{1}, v_{2} \in W$ and $a, b \in F \Rightarrow a v_{1}+b v_{2} \in W$
b. $0 \in W$
c. W is a null space
d. None of these
17. A complex inner product space is often referred to as a...
a. Unitary space
c. Normal space
b. Euclidean space
d. None of these
18. Trivial subspaces of V are
a. V itself
c. V itself and $\{0\}$
b. $\{0\}$
d. None of these
19. The intersection of arbitrary subspaces of a vector space is of that vector space.
a. May not be a subspace
b. A subspace
c. Normal subspace
d. Orthonormal subspace
20. If rank of the co-efficient matrix is same as the number of variables, then the system has a. Non-zero solution
b. No solution
c. One solution
d. Zero solution

[PART (A):OBIECTIVE]

Duration : $\mathbf{2 0}$ Minutes
Serial no. of the main Answer sheet

Course :

\qquad

Semester \qquad Roll No : \qquad

Enrollment No : \qquad Course code : \qquad

Course Title :

\qquad

Session: \qquad 2017-18 \qquad Date : \qquad
\qquad

Instructions / Guidelines

$>$ The paper contains twenty $(20) /$ ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
$>$ Students have to submit the Objective Part (Part-A) to the invigilator just after
completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained	
20		

