RE**v**-00 MSM/44/50

> M. Sc. MATHEMATICS FIRST SEMESTER NUMERICAL ANALYSIS MSM - 104

Duration: 3 Hrs.

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[<u>PART-B: Descriptive</u>]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

- State and prove the fundamental theorem of differential calculus. A 10 third degree polynomial passes through (0,-1),(1,1), (2,1), and (3,-2). Find the polynomial.
- 2. Given $log_{10}654 = 2.8156, log_{10}658 = 2.8182, log_{10}659 = 2.8189, log_{10}661 = 2.8202$ 10 find $log_{10}656$. By means of Lagrange's formula prove that $y_1 = y_3 - .3(y_5 - y_{-3}) + .2(y_{-3} - y_{-5})$
- **3.** Deduce Lagrange's Interpolation formula.Mention the properties of 5+5=10 Divided Differences. Prove that Divided differences are symmetric functions of their arguments.
- Derive general quadrature formula, Simpson's one third rule, Simpson's 4+3+3 three-eight rule.
- 5. Use Euler's modified method to compute y for x= 0.05, and x=0.1. Given 5+5=10 that $\frac{dy}{dx} = x + y$ with the initial condition $x_0 = 0, y_0 = 1$.
- Deduce Newton Raphson method. Find the real root of the equation 5+5=10 x² + 4sinx - 0 correct to four places of decimal by using Newton Raphson method.

2017/12

Marks: 50

Marks: 70

7. State Bisection method and describe it. Find a real root of the equation2+4+4 $x^3 - x-1= 0.$ =10

8. Evaluate $\int_{0.5}^{0.7} x^{\frac{1}{2}} e^{-x} dx$ using Simpson's 1/3 rd rule dividing the 10

range of integration into 4 equal parts.

==***==

REV-00 MSM/44/50

M. Sc. MATHEMATICS FIRST SEMESTER NUMERICAL ANALYSIS MSM - 104

[PART-A : Objective]

Choose the correct answer from the following :

- 1. The graph of the function y=f(x), where f(x) is a real valued function in the interval
 - $a \le x \le b$ and f(a) and f(b) have opposite signs crosses the x axis
 - a. Odd number of times
 - **b.** Even number of times
 - c. once
 - **d.** None of them
- 2. The method used to solve the given equation F(x)=0 which is an algebraic or transcendental equation is
 - a. Iterative method
 - **b.** Discrete method
 - **c.** Difference method
 - d. None of them
- 3. If the given polynomial is of odd degree, then the equation f(x)=0 has
 - a. No root
 - **b.** Atleast one real root
 - c. Two roots
 - d. None of these
- **4.** Newton Raphson method is a ____ method.
 - a. Graphical
 - b. Transcendental
 - c. Forward Interpoltaion
 - d. None of these
- 5. Rate of convergence of Newton's method is
 - a. Cubic
 - b. Biquadratic
 - c. Infinite
 - d. None of these
- 6. The general quadrature formula in numerical integration is of _____ ordinates
 - a. Different
 - b. Hypothetical
 - c. Unequal
 - d. None of these

- 7. In general quadrature formula for deriving Simpsons one-third rule we put the value of n as
 - a. 1
 c. 3

 b. 2
 d. 5
- 8. In general quadrature formula for deriving Simpsons three -eighth rule we put the value of n as
 - a. 2
 - **b.** 4
 - **c.** 3
 - d. None of these
- 9. In general quadrature formula for deriving Weddle's rule we put the value of n as a. 2
 - b. 4
 - **c.** 5
 - **d.** None of these
- 10. Problems which involve second order differential equation are known as
 - a. Boundary value problem
 - **b.** Initial value problem
 - c. Equidistant problem
 - d. All of these
- **11.** Euler's method starts with ______ differential equation.
 - a. Boundary value problem
 - b. Initial value problem
 - c. Equidistant problem
 - d. All of these
- 12. Modified Euler's method is a method of numerically accurate solving of _____.
 - a. Integral equation
 - b. Cubic equation
 - c. Both of these
 - d. None of these

13. In the Euler's method equation $y_{n+1} = y_n + hf(x_n, y_n)$, the value of n starts from

a. n c. n+1 b. 0 d. 1

14. In the initial equation of Euler's method i.e $\frac{dy}{dx} = f(x, y), y(x_0)$ is equal to

a. 1 b. *Y*_n c. *Y*1

d. None of these

 $1 \times 20 = 20$

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

15. If $D = x \frac{d}{dx}$, then $e^{L} f(x)$ is			[PART (A) : OB Duration : 20 M	[ECTIVE] Ainutes	Serial no. of the main Answer sheet
a. $f(x+h)$ c. $f(e^x)$	Unredling Ly	sellence			
b. $f(\frac{1}{x})$ d. 0	Course	e :			
16. The value of any divided difference is of the ca. Dependentb. Independent	order of arguements	Semester : Roll No :			
c. Free d. None of these	Enroll	lment No :		Course code :	
17. The value of $\Delta^n \chi^{(n)}$ is a. $n! n^h$	Cours	e Title :			
b. nh	Sessio	on: 2017-1	8	Date :	
c. $n h^n$ d. None of these	*******	*******	*****		******
 18. Eⁿfa) = (I + Δ)ⁿf(a) is the formulae which ena differences a. (n-1) th differences b. (n+1) th differences c. n th differences d. None of these 	ibles us to find out	 The paper contains tw Students shall tick (No marks shall be giv 	Instructions / G renty (20) / ten (10) the correct answer en for overwrite / er	uidelines questions. asing.	
 19. ∆² represents that the operation of differences has be a. thrice b. twice c. once d. None of these 	een done	 Students have to subm completion of the allo 	it the Objective Par tted time from the s	t (Part-A) to the invigilat	or just after
20. $f(a + nh) - f\{a + (n - 1)h\}$ is an example of		F	ull Marks Ma	ks Obtained	

- a. second difference
- b. nth difference

- c. first difference
- d. None of these

==***==

Scrutinizer's Signature

Examiner's Signature

20

Invigilator's Signature