2017/12

M. Sc. MATHEMATICS
 FIRST SEMESTER NUMERICAL ANALYSIS
 MSM - 104

Duration: 3 Hrs.

$$
\begin{aligned}
& \text { Part: A }(\text { Objective })=20 \\
& \text { Part }: B(\text { Descriptive })=50
\end{aligned}
$$

[PART-B: Descriptive]
Duration: 2 Hrs. 40 Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. State and prove the fundamental theorem of differential calculus. A third degree polynomial passes through $(0,-1),(1,1),(2,1)$, and $(3,-2)$. Find the polynomial.
2. Given $\log _{10} 654=2.8156, \log _{10} 658=2.8182, \log _{10} 659=2.8189, \log _{10} 661=2.8202$ find $\log _{10} 656$. By means of Lagrange's formula prove that $y_{1}=y_{3}-.3\left(y_{5}-y_{-3}\right)+.2\left(y_{-3}-y_{-5}\right)$
3. Deduce Lagrange's Interpolation formula.Mention the properties of
Divided Differences. Prove that Divided differences are symmetric
functions of their arguments.
4. Derive general quadrature formula, Simpson's one third rule, Simpson's
three-eight rule.
5. Use Euler's modified method to compute y for $\mathrm{x}=0.05$, and $\mathrm{x}=0.1$. Given
that $\frac{d y}{d x}=x+y$ with the initial condition $x_{0}=0, y_{0}=1$.
6. Deduce Newton Raphson method. Find the real root of the equation $x^{2}+4 \sin x-0$ correct to four places of decimal by using Newton Raphson method.
7. State Bisection method and describe it. Find a real root of the equation $2+4+4$ $x^{3}-x-1=0$.
8. Evaluate $\int_{0.5}^{0.7} x^{\frac{1}{2}} e^{-x} d x$ using Simpson's $1 / 3 \mathrm{rd}$ rule dividing the range of integration into 4 equal parts.

M. Sc. MATHEMATICS

FIRST SEMESTER
NUMERICAL ANALYSIS
MSM - 104

[PART-A: Objective]

Choose the correct answer from the following:

1. The graph of the function $y=f(x)$, where $f(x)$ is a real valued function in the interval $a \leq x \leq b$ and $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$ have opposite signs crosses the x axis
a. Odd number of times
b. Even number of times
c. once
d. None of them
2. The method used to solve the given equation $F(x)=0$ which is an algebraic or transcendental equation is
a. Iterative method
b. Discrete method
c. Difference method
d. None of them
3. If the given polynomial is of odd degree, then the equation $f(x)=0$ has
a. No root
b. Atleast one real root
c. Two roots
d. None of these
4. Newton Raphson method is a \qquad method.
a. Graphical
b. Transcendental
c. Forward Interpoltaion
d. None of these
5. Rate of convergence of Newton's method is
a. Cubic
b. Biquadratic
c. Infinite
d. None of these
6. The general quadrature formula in numerical integration is of \qquad _ ordinates
a. Different
b. Hypothetical
c. Unequal
d. None of these
7. In general quadrature formula for deriving Simpsons one-third rule we put the value of n as
a.
b. 2
c. 3
d. 5
8. In general quadrature formula for deriving Simpsons three -eighth rule we put the value of n as
a. 2
b. 4
c. 3
d. None of these
9. In general quadrature formula for deriving Weddle's rule we put the value of n as a. 2
b. 4
c. 5
d. None of these
10. Problems which involve second order differential equation are known as
a. Boundary value problem
b. Initial value problem
c. Equidistant problem
d. All of these
11. Euler's method starts with \qquad differential equation.
a. Boundary value problem
b. Initial value problem
c. Equidistant problem
d. All of these
12. Modified Euler's method is a method of numerically accurate solving of \qquad -
a. Integral equation
b. Cubic equation
c. Both of these
d. None of these
13. In the Euler's method equation $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$, the value of n starts from
a. n
c. $\mathrm{n}+1$
d. 1
14. In the initial equation of Euler's method i.e $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)$ is equal to
a. 1
c. Y_{1}
b. y_{n}
d. None of these
15. If $D=x \frac{d}{d x}$, then $e^{D} f(x)$ is
a. $f(x+h)$
b. $f\left(\frac{1}{x}\right)$
c. $f\left(e^{x}\right)$
d. 0
16. The value of any divided difference is \qquad of the order of arguements
a. Dependent
b. Independent
c. Free
d. None of these
17. The value of $\Delta^{n} X^{(n)}$ is
a. $n!n^{h}$
b. nh
c. $n h^{n}$
d. None of these
18. $\left.E^{n} f a\right)=(I+\Delta)^{n} f(a)$ is the formulae which enables us to find out \qquad differences
a. $(n-1)$ th differences
b. $(\mathrm{n}+1)$ th differences
c. nth differences
d. None of these
19. Δ^{2} represents that the operation of differences has been done
a. thrice
b. twice
c. once
d. None of these
20. $f(a+n h)-f\{a+(n-1) h\}$ is an example of
a. second difference
b. nth difference
c. first difference
d. None of these

Course :

\qquad

Semester : \qquad Roll No :

Enrollment No : \qquad Course code : \qquad

Course Title :

Session: \qquad 2017-18 \qquad Date: \qquad
?

Instructions / Guidelines

$>$ The paper contains twenty (20) / ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
$>$ Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained	
20		

