M. Sc. MATHEMATICS FIRST SEMESTER Abstract algebra - I
 MSM - 103

Duration: 3 Hrs.
Marks: 70
Part: A (Objective) $=\mathbf{2 0}$
Part : B (Descriptive) $=50$
[PART-B: Descriptive]
Duration: 2 Hrs. 40 Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. State and prove the fundamental theorem of group homomorphism. $\quad 3+7=10$
2. a. Define subgroup of a group G. Union of two subgroups may not be a $4+6=10$
subgroup. Justify with an example. subgroup. Justify with an example.
b. State and prove the Lagrange's theorem.
3. Answer the following: $3+2+5$
a. Define ideal of a ring with example.
b. Define prime ideal of a ring.
c. Prove that an ideal P of a commutative ring R is prime iff R / P is an integral domain.
4. a. Define external direct product of groups.
b. Let G_{1} and G_{2} be two cyclic groups of order 2 and 3 respectively. Is $G_{1} \times G_{2}$ cyclic? Justify with an example.
5. a. State the Eisenstein's criteria for a polynomial over a ring.
b. Prove that the polynomial $f(x)=x^{3}+x^{2}-2 x-1$ is irreducible over Q .
c. If $R[x]$ is the ring of polynomials over a ring R, then prove that R is commutative iff $R[x]$ is commutative.
6. a. Define solvable group. Show that S_{3} is a solvable group.
b. Prove that a subgroup H of a solvable group is solvable.
7. a. Define Sylow p-subgroup.
b. State Sylow's third theorem.
c. If $\mathrm{o}(\mathrm{G})=200$, then find the Sylow p-subgroups of G.
8. a. Define cyclic group. $2+3+5$
b. Prove that cyclic group is abelian.
c. Prove that a subgroup of a cyclic group is cyclic.
M. Sc. MATHEMATICS

FIRST SEMESTER
Abstract algebra-I
MSM - 103

[PART-A: Objective]

Choose the correct answer from the following:
$1 \times 20=20$

1. An isomorphism from a group G to itself is called
a. Monomorphism
b. Epimorphism
c. Endomorphism
d. Automorphism
2. If G is a cyclic group of order 6 , then which of the following can be order of its subgroup a. 3
b. 4
c. 7
d. 9
3. Let H be a subgroup of G , then which of the following is false
a. $H a=H \Leftrightarrow a \in H$
b. $H a=H b \Leftrightarrow a b^{-1} \in H$
c. $H a=H b \Leftrightarrow a b \in H$
d. $H a$ is a subgroup of G iff $a \in H$
4. A group of order 15 is
a. Abelian
b. Non abelian
c. Cannot be determined
d. None of these
5. The set of zero divisors of $\left(Z_{6},+,.\right)$ is
a. $\{0\}$
b. $\{0,2\}$
c. $\{0,2,3\}$
d. None of these
6. If G is a finite group of order n and $a \in G$ is any element of order m. Then G is cyclic if a. $m>n$
b. $m=n$
c. $m<n$
d. None of these
7. Which of the following is true
a. $\mathrm{UFD} \subseteq \mathrm{PID} \subseteq E D$
b. $\mathrm{PID} \subseteq \mathrm{UFD} \subseteq E D$
c. $\mathrm{ED} \subseteq \mathrm{PID} \subseteq \mathrm{UFD}$
d. $\mathrm{PID} \mathrm{\subseteq ED} \mathrm{\subseteq UFD}$
8. The additive inverse of $(1,2)$ in $Z_{3} \times Z_{5}$ is
a. $(2,1)$
b. $(2,3)$
c. $(1,3)$
d. None of these
9. Consider the polynomials $f(x)=8 x^{3}+6 x+1 \in Z[x]$ and $g(x)=8 x^{3}+6 x+2 \in Z[x]$, which of the these is primitive
a. Only $f(x)$
b. Only $g(x)$
c. Both $f(x)$ and $g(x)$
d. None of these
10. Any integral domain can be imbedded into a/an
a. Integral domain
b. Field
c. Ring without unity
d. None of these
11. If G is a group of order 10 , then which of the following can be a class equation of G
a. $1+1+2+2+2+2=10$
b. $1+1+1+2+3+3=10$
c. $1+1+1+2+5=10$
d. None of these
12. A homomorphism $f: G \rightarrow G^{\prime}$ is one-one iff
a. $\operatorname{Kerf} \neq\{e\}$
b. $\operatorname{Kerf}=\{e\}$
c. $\operatorname{Kerf}=G$
d. None of these
13. In a commutative ring R with unity, if all the non zero elements of R have multiplicative inverse, then it is called
a. Field
b. Skew field
c. Integral domain
d. Ideal
14. Let R be a commutative ring with unity. Then an ideal M of R is maximal iff R / M is a
a. Skew field
c. Ideal
b. Field
d. None of these
15. A finite group G is a p-group if and only if
a. $o(G)=p^{n}$
c. $o(G)=p^{n-1}$
b. $o(G)=p^{n+1}$
d. None of these
16. Which of the following is true.
a. If G is a finite group and p is any prime such that p^{k} divides o(G) but p^{k+1}
doesnot divide $\mathrm{o}(\mathrm{G})$, then there exists no subgroup of order p^{k}
b. Any group of order 55 is abelian
c. If H and K are two p-Sylow subgroups of a finite group G , then there exists an element $x \in G$ such that $H=x K x^{-1}$
d. None of these
17. If G is a finite group with its centre as $Z(G)$ and $C(a)$ is the centralizer of any $a \in G$, then the class equation of G is defined as
a. $o(G)=o[Z(G)]+\sum_{a \in Z(G)} \frac{o(G)}{o[C(a)]}$
b. $o(G)=o[Z(G)]+\sum_{a \notin Z(G)} \frac{o(G)}{o[C(a)]}$
c. $o(G)=o[Z(G)]+\sum_{a \in G} \frac{o(G)}{o[C(a)]}$
d. None of these
18. Let H be a normal subgroup of G. Then G is solvable if
a. H is solvable
b. G / H is solvable
c. Both H and G / H are solvable
d. None of these
19. The number of subgroups of Z_{30} is
a. 3
b. 8
c. 10
d. 15
20. Z_{n} is a field if \mathbf{n} is
a. Prime
b. An odd integer
c. An even integer
d. Any positive integer

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : 20 Minutes
Serial no. of the main Answer sheet \square

Course : \qquad

Semester : \qquad Roll No :

Enrollment No : \qquad Course code : \qquad

Course Title : \qquad

Session : \qquad 2017-18 \qquad Date : \qquad

Instructions / Guidelines

$>$ The paper contains twenty $(20) /$ ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
$>$ Students have to submit the Objective Part (Part-A) to the invigilator just after
completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained	
20		

