REV-00 MSM/39/44 2017/12

M. Sc. MATHEMATICS FIRST SEMESTER DIFFERENTIAL EQUATION MSM - 102

Duration: 3 Hrs.

Marks: 70

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

Marks: 50

[Answer question no. One (1) & any four (4) from the rest]

- 1. State Legendre Equation and find its solution.2+8=10
- 2. What is application of Charpit's Method? Describe Charpit's Method? 3+7=10
- 3. What do you mean by non homogeneous equation?Solve 2+8=10(D-D'-1)(D-D'-2)Z = Sin(2x+3y)
- 4. What is the relation between exactness and integrability of a Total 2+8=10 differential equation? Solve $(y^2 + yz)dx + (xz + z^2)dv + (y^2 - xy)dz = 0$
- 5. What do you mean by Linear Differential equation of second degree? 2+8=10 Solve $\frac{d^2 y}{dx^2} + (1 - \cot x)\frac{dy}{dx} - y \cot x = \sin^2 x$
- 6. Find complete integral of 5+5=10 (a) $z = px + qy + p^2 + q^2$, (b) $q = 3p^2$

7. Find the 3rd approximation of the second solution of the equation 8+2=10 $\frac{dy}{dx} = z, \frac{dz}{dx} = x^3(y+z)$ by Picard's Method where y = 1, z = 1/2 when x = 0 what do you mean by Picard's Method. 8. What is the difference between Ordinary and Singular point?Determine whether x = 0 is an ordinary point or a regular singular point of the differential equation

2+6+2 =10

 $2x^{2}\frac{d^{2}y}{dx^{2}} + 7x(x+1)\frac{dy}{dx} - 3y = 0$.Write a power series in $(x - x_{0})$.

REV-00 MSM/39/44

M. Sc. MATHEMATICS FIRST SEMESTER DIFFERENTIAL EQUATION MSM - 102

[PART-A: Objective]

 $1 \times 20 = 20$

- **1.** Which of the following is n^{th} approximation Y_n In Picard's Method.
 - a. $y_n(x) = y_0 + \int_{x_0}^{x} f(x, y_{n-1}) dx$ b. $y_1(x) = y_0 + \int_{x_0}^{x} f(x, y_{n-1}) dx$ c. $y_n(x) = y_0 + \int_{x_0}^{x} f(x, y_n) dx$ d. $y_n(x) = y_0 + \int_{x}^{x_0} f(x, y_n) dx$

Choose the correct answer from the following:

In Lipschiz Condition | f(x, y₂) - f(x, y) | ≤ k where (x, y₂) and (x, y₂) both lie in *D*. In which of the following f(x, y) satisfy Lipschiz Condition.

 a. Z-Plan
 b. X-Plan
 c. yz plan
 d. XY Plan

 For which reason Existence Theorem is called Existence

c. $\phi(x, y, t) = k(const)$

d. x, y

- a. It has no solution
- **b.** It does have a solution
- c. It has a unique solution
- d. It has two solution
- 4. For which reason Uniqueness Theorem is called uniquenessa. more than one solutionb. only one solutionc. two solutiond. All of above
- 5. The solution of a differential equation Pdx + Qdy + Rdz = 0 is
 - a. f(x, y, t) = k(const)
 - **b.** f(x, y, z) = k(const)

6. The equation $\left(\frac{\partial z}{\partial x}\right)^2 + \frac{\partial^3 z}{\partial y^3} = 2x \frac{\partial z}{\partial x}$

a. Linearb. Semi linear

c. non-linear **d.** quasi linear

- 7. The condition of exactness of an equation Pdx + Qdy + Rdz = 0 is
 - a. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial Z} = \frac{\partial R}{\partial y}, \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$ b. $\frac{\partial Q}{\partial x} = \frac{\partial R}{\partial y}, \frac{\partial Q}{\partial Z} = \frac{\partial P}{\partial y}, \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$ c. $\frac{\partial Q}{\partial x} = -\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial Z} = \frac{\partial R}{\partial y}, \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$ d. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial Z} = \frac{\partial R}{\partial y}, \frac{\partial P}{\partial x} = \frac{\partial R}{\partial z}$
- 8. $(D^4 D^{\prime 4})Z = 0, m = ?$ a. m = 1, -1, i, -ib. m = -i, -i, -i, 1c. m = 1, 1, 1, id. m = 1, -i, -i, -i, -i
- In complete primitive of a differential equation in variation parameter method
 A and B are

 a. Variable
 b. Constant
 c. Parameter
 d. function
- **10.** The condition for f(x) to be Analytic function is
 - a. (i) converges to f(x)
 - **b.** (ii)) its Taylor's Series does not exists and converges to f(x)
 - **c.** (iii) Both of (i) and (ii)
 - **d.** (iv) its Taylor's Series exists and converges to f(x) for all x
- 11. An example of power series isa. Logarithm functionb. Exponential Function

c. Analytic Function **d.** Hyperbolic function

-12

- **12.** The general solution of Pp + Qq = R is
 - **a.** $\phi(x, y) = 0$ where *x* and *y* two dependent solution
 - b. $\phi(x) = 0$
 - **c.** $\phi(u, v) = 0$ where *u* and *v* two independent solution **d.** none of the above

2017/12

UNIVERSITY	OF SCIENCE &	TECHNOLOGY,	MEGHALAYA
		o pro operal	[]

	13.	The Clariaut's form of a partial differential e a. 3 rd order b. Order two	equation is c. linear d. first order equation
	14.	Singular integral of $z = px + qy + pq$ is a. $z = -xy$ b. $z = y/x$	c. $z = y + y$ d. $z = xy$
	15.	In Legendre's polynomial $P_0(x) = ?$ a. 2 b. 0	c. 1 d1
	16.	In Bessel's equation ^{<i>n</i>} is a. constant b. negative constant c. intezer d. Non-negative constant	
	17.	In the solution of Legendre's equation $P_n(x)$ and $Q_n(x)$ are a. Dependent solutions b. Linearly independent solutions	c. independent solutions d. Positive solution
*	18.	 The general solution of Bessel's equation ^A a. parameter b. constant c. variable d. Negative constant 	and <i>B</i> is
	19.	For solving the equation $Y_2 + \frac{F(x)}{x}Y_1 + \frac{G(x)}{x}$	$\frac{(x)}{2}Y = 0$, we apply
		 a. Frobenious Method b. Clairaut's Formula c. Lagrange Method d. none of the above 	
	20.	 A power series represents a a. Analytic function within its interval of ce b. Discontinuous function within its interval of c. continuous function within its interval of d. Open function within its interval of conv 	al of convergence f convergence

= = *** = =

5

A Description	[PART (A) : OBJECTIVE] Duration : 20 Minutes	Serial no. of the main Answer sheet
Course :		
Semester :	Roll No :	
Enrollment No :	Course code :	
Course Title :		
Session : 20	17-18 Date :	
*******	Instructions / Guidelines	
> The paper contai	ns twenty (20) / ten (10) questions.	
> Students shall tic	k (\checkmark) the correct answer.	
> No marks shall b	e given for overwrite / erasing.	
> Students have to	submit the Objective Part (Part-A) to the in	vigilator just after
completion of th	e allotted time from the starting of examinat	ion

Full Marks	Marks Obtained
20	

Scrutinizer's Signature

Examiner's Signature

Invigilator's Signature