M. Sc. MATHEMATICS
 FIRST SEMESTER
 DIFFERENTIAL EQUATION
 MSM - 102

Duration: 3 Hrs.
Marks: 70
Part: A (Objective) $=\mathbf{2 0}$
Part : B (Descriptive) $=50$
[PART-B: Descriptive]
Duration: 2 Hrs. $\mathbf{4 0}$ Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. State Legendre Equation and find its solution.
2. What is application of Charpit's Method? Describe Charpit's Method?
$3+7=10$
3. What do you mean by non homogeneous equation?Solve

$$
2+8=10
$$

$$
\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) Z=\operatorname{Sin}(2 x+3 y)
$$

4. What is the relation between exactness and integrability of a Total differential equation?
Solve $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$
5. What do you mean by Linear Differential equation of second degree?

Solve $\frac{d^{2} y}{d x^{2}}+(1-\cot x) \frac{d y}{d x}-y \cot x=\sin ^{2} x$
6. Find complete integral of
(a) $z=p x+q y+p^{2}+q^{2}$
(b) $q=3 p^{2}$
7. Find the $3^{\text {rd }}$ approximation of the second solution of the equation $8+2=10$ $\frac{d y}{d x}=z, \frac{d z}{d x}=x^{3}(y+z)$ by Picard's Method where $y=1, z=1 / 2$ when $x=0$. what do you mean by Picard's Method.
8. What is the difference between Ordinary and Singular point?Determine
whether $x=0$ is an ordinary point or a regular singular point of the differential equation

$$
\begin{aligned}
& 2 x^{2} \frac{d^{2} y}{d x^{2}}+7 x(x+1) \frac{d y}{d x}-3 y=0 . \text { Write a power series in } \\
& \left(x-x_{0}\right)
\end{aligned}
$$

$$
==* * *==
$$

M. Sc. MATHEMATICS

 FIRST SEMESTER

 FIRST SEMESTER

 DIFFERENTIAL EQUATION

 DIFFERENTIAL EQUATION}

MSM - 102

[PART-A: Objective]

Choose the correct answer from the following:

1. Which of the following is $\mathrm{n}^{\text {th }}$ approximation Y_{n} In Picard's Method.
a. $y_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) d x$
b. $y_{1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n-1}\right) d x$
c. $y_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{n}\right) d x$
d. $y_{n}(x)=y_{0}+\int_{x}^{x_{0}} f\left(x, y_{n}\right) d x$
2. In Lipschiz Condition $\left|f\left(x, y_{2}\right)-f(x, y)\right| \leq k$ where $\left(x, y_{2}\right)$ and $\left(x, y_{2}\right)$ both lie in D.In which of the following $f(x, y)$ satisfy Lipschiz Condition.
a. Z-Plan
c. yz plan
b. X-Plan
d. XY Plan
3. For which reason Existence Theorem is called Existence
a. It has no solution
b. It does have a solution
c. It has a unique solution
d. It has two solution
4. For which reason Uniqueness Theorem is called uniqueness
a. more than one solution
c. two solution
b. only one solution
d. All of above
5. The solution of a differential equation $P d x+Q d y+R d z=0$ is
a. $f(x, y, t)=k($ const $)$
b. $f(x, y, z)=k($ const $)$
c. $\phi(x, y, t)=k($ const $)$
d. x, y
6. The equation $\left(\frac{\partial z}{\partial x}\right)^{2}+\frac{\partial^{3} z}{\partial y^{3}}=2 x \frac{\partial z}{\partial x}$
a. Linear
c. non-linear
b. Semi linear
d. quasi linear
7. The condition of exactness of an equation $P d x+Q d y+R d z=0$ is
a. $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial Z}=\frac{\partial R}{\partial y}, \frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
b. $\frac{\partial Q}{\partial x}=\frac{\partial R}{\partial y}, \frac{\partial Q}{\partial Z}=\frac{\partial P}{\partial y}, \frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
c. $\frac{\partial Q}{\partial x}=-\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial Z}=\frac{\partial R}{\partial y}, \frac{\partial R}{\partial x}=\frac{\partial P}{\partial z}$
d. $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial Z}=\frac{\partial R}{\partial y}, \frac{\partial P}{\partial x}=\frac{\partial R}{\partial z}$
8. $\left(D^{4}-D^{\mu^{4}}\right) Z=0, m=$?
a. $m=1,-1, i,-i$
b. $m=-i,-i,-i, 1$
c. $m=1,1,1, i$
d. $m=1,-i,-i,-i$
9.

A and B are
a. Variable
c. Parameter
b. Constant
d. function
10. The condition for $f(x)$ to be Analytic function is
a. (i) converges to $f(x)$
b. (ii)) its Taylor's Series does not exists and converges to $f(x)$
c. (iii) Both of (i) and (ii)
d. (iv) its Taylor's Series exists and converges to $f(x)$ for all x
11. An example of power series is
a. Logarithm function
c. Analytic Function
b. Exponential Function
d. Hyperbolic function
12. The general solution of $P p+Q q=R$ is
a. $\phi(x, y)=0$ where x and y two dependent solution
b. $\phi(x)=0$
c. $\phi(u, v)=0$ where u and v two independent solution
d. none of the above
13. The Clariaut's form of a partial differential equation is
a. $3^{\text {rd }}$ order
c. linear
b. Order two
d. first order equation
14. Singular integral of $z=p x+q y+p q$ is
a. $z=-x y$
b. $z=y / x$
c. $z=y+y$
d. $z=x y$
15. In Legendre's polynomial $P_{0}(x)=$?
a. 2
b. 0
c. 1
d. -1
16. In Bessel's equation ${ }^{n}$ is
a. constant
b. negative constant
c. intezer
d. Non-negative constant
17. In the solution of Legendre's equation
$P_{n}(x)$ and $Q_{n}(x)$ are
a. Dependent solutions
c. independent solutions
b. Linearly independent solutions
d. Positive solution
A and B is
a. parameter
b. constant
c. variable
d. Negative constant
19. For solving the equation $Y_{2}+\frac{F(x)}{x} Y_{1}+\frac{G(x)}{x^{2}} Y=0$, we apply
a. Frobenious Method
b. Clairaut's Formula
c. Lagrange Method
d. none of the above
20. A power series represents a
a. Analytic function within its interval of convergence
b. Discontinuous function within its interval of convergence
c. continuous function within its interval of convergence
d. Open function within its interval of convergence

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : 20 Minutes
Serial no. of the main Answer sheet \square

Course : \qquad

Semester: \qquad Roll No :

Enrollment No : \qquad Course code : \qquad

Course Title :

\qquad

Session : \qquad 2017-18 \qquad Date : \qquad
\qquad

Instructions / Guidelines

$$
\begin{aligned}
& >\text { The paper contains twenty }(20) / \text { ten }(10) \text { questions. } \\
& >\text { Students shall tick }(\checkmark) \text { the correct answer. } \\
& >\text { No marks shall be given for overwrite / erasing. } \\
& >\text { Students have to submit the Objective Part (Part-A) to the invigilator just after } \\
& \text { completion of the allotted time from the starting of examination. }
\end{aligned}
$$

Full Marks	Marks Obtained
20	

