REV-00 MSM/44/50

> M. Sc. MATHEMATICS FIRST SEMESTER **ANALYSIS - I** MSM - 101

Duration: 3 Hrs.

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

1. State and prove the Cauchy's General Principle of convergence of 3+7=10sequence. the second mean value theorem. Show that 2. State 2+8=10 $\frac{v - u}{1 + v^2} < \tan^{-1} v - \tan^{-1} u < \frac{v - u}{1 + u^2} , \quad \text{if } \quad 0 < u < v \quad \text{and} \quad \text{deduce}$

$$\frac{\tan \frac{\pi}{4} + \frac{3}{25}}{\tan^{-1} \frac{\pi}{3}} < \frac{\pi}{4} + \frac{\pi}{6}$$

3. (a) If $\lim_{x\to 0} \frac{a \sin x - \sin 2x}{\tan^3 x}$ is finite, find the value of *a* and the limit. 7+3=10(b) Find $\lim x^{\frac{1}{1-x}}$

4. State and prove Taylor's theorem.

5. (a) Define uniform convergence of sequence of functions. Write the 2+3+5difference between pointwise convergence and uniform convergence. = 10 (b) Prove that the sequence $\{f_n\}$ where $f_n(x) = \frac{x}{1+nx^2}$, x is real

converges uniformely on any interval I.

6. Test the convergence of the following series:

(a)
$$1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

(b) $\sum \frac{3.6.9....3n}{7.10.13...(3n+4)} x^n$, $x > 0$

2017/12

Marks: 50

Marks: 70

2+8=10

4+6=10

- 7. Answer the following:
 - (a) Define compactness in a metric space.
 - (b) Is the open interval (0, 1) compact with the usual metric. Justify your answer.
 - (c) Prove that continuous image of a connected set is connected.
- 8. (a) Define continuity in a metric space.
 - (b) If (X,d₁) and (Y,d₂) are two metric spaces and f: X → Y. Then prove that f is continuous if and only if the inverse image under f of open subsets of Y is an open subset in X.

==***==

3+7=10

1.

2.

3.

4.

5.

6.

28

1SN	1/44/50		
	M. Sc. 1 FIF	MATHEMATICS RST semester Analysis - I MSM - 101	
	[<u>PAR</u>	<u>ar-A:Objective</u>]	
Ch	oose the correct answer from the foll	lowing :	1×20=20
1.	The sequence $\left\{1+\frac{1}{n}\right\}$ converges to		
	a. 0 b. 1	c. 2 d. 3	
2.	A subset of a metric space (X, d) is cl	osed iff	
	a. $D(A) \subseteq A$ b. $A \subseteq D(A)$	c. $D(A) \not\subset A$ d. None of these	
3.	If $\sum u_n$ is a positive term series suc	h that $\lim_{n \to \infty} (u_n)^{1/n} = l$, then the	series converges if
	a. l > 1 b. l < 1	c. <i>l</i> = 1d. None of these	
4.	Which of the following statement is	false	
	a. Every closed subset of a compactb. The interval [1, 3] with the usual	metric space is compact. metric is compact.	
	c. A subset A of a metric space is union of two non empty separated. Continuous image of a connected	said to be connected if it can be ed sets. l set is connected.	e expressed as the
5.	The Heine-Borel theorem states that		
	a. Continuous image of a compact sb. Every closed and bounded subsec. Every compact subset of a metricd. None of these	set is compact. et of the real line is compact. e space is closed.	
6.	Every convergent sequence hasa. A unique limit pointb. Atleast one limit pointc. Atmost two limit pointsd. None of these		

7. Two sets A and B in a metric space (X, d) are said to be separable if

- a. $A \cap \overline{B} \neq \phi$ and $\overline{A} \cap B = \phi$ **b.** $A \cap \overline{B} = \phi$ and $\overline{A} \cap B = \phi$ c. $A \cap \overline{B} \neq \phi$ and $\overline{A} \cap B \neq \phi$ **d**. None of these
- 8. Let (X, d) be a metric space. Then a mapping $f: X \to X$ is said to be a contraction mapping if there exists a positive real number α with $\alpha < 1$ such that for all $x, y \in X$
 - a. $d(f(x), f(y)) = \alpha d(x, y)$
 - b. $d(f(x), f(y)) \ge \alpha d(x, y)$
 - c. $d(f(x), f(y)) \le \alpha d(x, y)$

d. None of these

2017/12

9. A function $f: (X, d) \to (Y, d')$ is isometry if a. $d(x, y) \le d'(f(x), f(y))$ b. $d(x, y) \ge d'(f(x), f(y))$ 12 c. d(x, y) = d'(f(x), f(y))d. None of these

10. $f(x) = |x| + |x - 1, \forall x \in R$ is continuous but not derivable at ...

- a. X=0,1
- b. X=0
- c. X=1
- d. None of these
- 11. $\lim_{x \to 0} \frac{\tan x - x}{x - \sin x} = ?$ a. 0 **c**.1 b. 2 d. None of these
- 12. Whether f(x) = |x| is derivable or not at the origin ?
 - a. Derivable
 - b. Can not say
 - c. Not derivable
 - **d**. None of these
- 13. A function which is derivable at a point is necessarily ... at that point.
 - a. Continuous b. Bounded
 - c. Differentiable
 - d. None of these

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

14.	$\lim_{x \to \frac{\pi}{2}} \frac{\tan 5x}{\tan x} = ?$			
	a. 5	c. -1/5		
	b. 0	d. 1/5		
15.	If $\int_{a}^{b} f dx$ exists, this implies that the fun	ction f is And over $[a,b]$.		
	a. Derivable, continuousb. Bounded , integrable	c. Derivable, bounded d. None of these		
16.	If two functions f and g defined on	[a,b] are continuous on $[a,b]$, derivable on		
	$a, b[, g'(x) \neq 0 \text{ for any } x \in [a, b],$ that a. $f(b) - f(a) - f'(x)$	then there exists a real number $c \in \left]a, b\right[$, such		
	$\frac{1}{g(b)-g(a)} = \frac{1}{g'(x)}$			
	b. $\frac{f(b) + f(a)}{a(b) + a(a)} = \frac{f'(x)}{a'(x)}$			
	c. $f(b) - f(a) = 0$			
	$\frac{1}{g(b) - g(a)} = 0$			
17	(c(x))	t = 1		
17.	Let $\{f_n(x)\}$ be a sequence of function such that $\lim_{n \to \infty} f_n(x) = f(x), x \in [a, b]$ and			
	$f_n \to f$ uniformly on $[a,b]$ if and on	ly if $M_n \to 0$ as $n \to \infty$. What is M_n ?		
	a. $M_n = f$	c. $M_n = \sup_{x \in [n]} f_n(x) - f(x) $		
	b. $M_n = \inf_{x \in [a,b]} f_n(x) - f(x) $	d. None of these		
18.	Uniform convergence of a sequence is c	lependent on		
	a. <i>x</i>	c. on \mathcal{E}		
	b. both x and ε	d. None of these		
19.	A sequence which is not pointwise convergent cannot be			
	a. Uniformly convergentb. Convergent	c. Continuous d. None of these		
20.	 A conditional convergent series is a. Absolutely convergent b. Convergent but not absolutely conv c. Divergent d. None of these 	vergent		
		<u>_***</u>		

(PART () Durat		A) : OBJECTIVE]	Serial no. of the main Answer sheet
Course :			
Semester :	28	Roll No :	
Enrollment No :		Course code :	
Course Title :			
Session :	2017-18	Date :	
*****	*****	*****	*****
	Instruct	ions / Guidelines	
 The paper contains twenty (20) / te Students shall tick (✓) the correct a No marks shall be given for overway 		ten (10) questions. t answer. write / erasing.	

Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained
20	

Scrutinizer's Signature

18