- 5. a. What do you mean by Assignment Problem?
 - b. Draw a flow chart in Hungarian Assignment Method (Minimization case).
 - c. Four jobs are to be done on four different machines. The cost (in rupees) of producing ith job on the jth machine is given below:

		Machines			
		M1	M ₂	M3	M4
Jobs	Jı	85	50	30	40
	J2	90	40	70	45
	J ₃	70	60	60	50
	J4	75	45	35	55

Assign the jobs to different machines so as to minimize the total cost.

- 6. a. Define basic feasible solution and optimal solution in terms of transportation problem.
 - b. Write the mathematical formulation of transportation problem.
 - c. State the basic assumptions of transportation problem.
- 7. a. What is an unbalanced transportation problem? How such a problem 5+5=10 handled and solution is obtained?
 - b. Compute initial basic feasible solution by North-West-Corner Method.

Plants	Sales Outlet			Capacity
	A	В	C	
Р	3	8	9	35
Q	4	4	6	40
R	8	3	5	55
Requirement	40	50	30	125
				120

- 8. a. Describe 5 important features of queuing model. b. Explain different types of queue discipline.
 - = = *** = =

REV-00 MEC/41/46

2+3+5=10

3+3+4=10

5+5=10

MA ECONOMICS FOURTH SEMESTER

OPERATION RESEARCH MEC 402

(Use separate answer scripts	-403 for Objective & Descriptive)
Duration: 3 hrs. $(PART_A \cdot ($	Diective
Time : 20 min.	Marks : 20
Choose the correct answer from the follo	owing: 1x20=20
 The approach of Operations Research comp a. orientation c. analysis and interpretation of results 	prises the following consequential steps:b. model formulationsd. all of the above
2. For analyzing a problem, decision-makers a. its qualitative aspectsc. both (a) and (b)	 should normally study: b. its quantitative d. neither (a) nor (b)
 Managerial decisions are based on: a. an evaluation of quantitative data c. numbers produced by formal model 	b. the use of quantitatived. all of the above
4. A constraint in an LP model restricts:a. value of objective functionc. use of the available resource	b. value of decision variabled. all of the above
5. Constraints in an LP model represents:a. limitationsc. balancing limitations and requirements	b. requirementsd. all of the above
6. The graphical method of LP problem uses:a. objective function equationc. linear equations	b. constraint equationsd. all of the above
7. If two constraints do not intersect in the poa. the problem is infeasiblec. one of the constraint is redundant	 sitive quadrant of the graph, then: b. the solution is unbounded d. none of the above
8. For maximization LP model, the simplex is a. $cj - zj \le 0$ c. $cj - zj = 0$	terminated when all values: b. $cj - zj \ge 0$ d. $zj \le 0$
 9. For a maximization problem the objective f a. + 1 c. 0 	 function coefficient for a slack variable is: b1 d. None of the above

10. An optimal assignment requires that the maximum number of lines that can be drawn through squares with zero opportunity cost be equal to the number of:

a.	rows or columns	b.	rows and columns
c.	rows + columns – 1	d.	none of the above

 b. prevent a solution from become c. provides a means of represend. d. none of the above. 	oming degenerate. enting a dummy problem.	Time : 2 hrs. 40 min
12. If there were n workers and n jo	obs there would be:	E.
a. n! solutions	b. (n-1)! solutions	
c. (n!)n solutions	a. n solutions	1. a . What is game
13. When total supply is equal to the	ne total demand in a transportation problem , the	b. Describe the e
problem is said to be	h. halanced problem	c. Solve the follo
c. maximization problem	d. none of these	
14. Two person zero-sum game me	eans that the sum of to one player is equal to the	
a. gain, loss	b. alternatives, courses of action	Player A
c. income, expenditure	d. none of these	
15. A game whose decision value is	s zero is termed as game.	
a. competitive	b. fair	
c. both a and b	d. none of these	
16. The in a pay off matrix	x is one which is the smallest value in its raw and the	2. What are the diff
largest value in its column.		approaches with
a. saddle point	b. pure strategies	upprouches with
c. odds	d. none of these	3. a. Explain the fol
17. Leaving variable is selected wit	th key row having positive ratio in simplex	i. Optimal Solu
method.		ii. Basic Feasibl
a. maximum	b. minimum	b. Solve the follo
c. both a) and b)	a. none of these	Max
18. Assignment problem deals in a	llocating the various resources or items to various	Sub to
activities on basis in s	such a way that the time or cost involved is minimized	
and sale or profit is maximized	h and to many	
c. many to one	d. none of these	
10 TL in the second second		Where
19. The queuing theory is based on	h random variable	
c. distribution	d. all of the above	4. a. Explain the ter
	1	problem.
20. The average time that a custom	er has to walt to get service is known as in queuing	b. Vitamins A ar
a, total time	c. waiting time	unit of P conta
c. idle time	d. all of the above	unit of Q cont
		minimum dail
		and 1000 resp

(<u>PART-B : Descriptive</u>)

Marks: 50

3+2+5=10

Answer question no.1 & any four (4) from the rest]

theory?

ssential feature of game theory.

wing game using Dominance Method.

		Player B			
		B ₁	B ₂	B ₃	
Player A	A ₁	2	8	3	
	A ₂	6	2	8	
	A ₃	4	1	6	

ferent approaches of OR Methodology? Explain the 5+5=10 the help of diagram.

llowing terms in context of LPP:

ation.

le Solution.

owing LPP by graphical method or simplex method.

Max	Z= 300X + 400Y
Sub to	$5X + 4Y \leq 200$
	$3X + 5Y \leq 150$
	$5X + 4Y \ge 100$
	$8X + 4Y \geq 80$
Where	x,y, ≥ 0

rm objective function & additivity in relation to LP

5+5=10

4+6=10

nd B are available in two different foods P & Q. One ains 2 units of vitamin A & 3 units of vitamin B. One ains 5 units of vitamin A & 4 units of vitamin B. The ly consumption of vitamin A and B should be 1200 ectively. One unit of P costs Rs. 7 and one unit of Q costs Rs. 5. Formulate the problem as a linear programming problem.

2

3