REV-00 MSE/7/12

M. SC. ELECTRONICS FIRST SEMESTER ENGINEERING MATHEMATICS AND STATISTICS MSE - 101

Duration: 3 Hrs.

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

1. A bag contains 8 white and 6 red balls. Find the probability of drawing 2 5+5=10 red balls of the same colour .

A bag contain 5 red and 10 black balls. Now eight of these balls are placed in another bag. What is the probability that the new ball contains 2 Red and 6lack balls.

- 2. Find the Laplace transform of $t^2 e^{-t} cost$ and $\frac{1-e^{-t}}{t}$ 5+5=10
- 3. State and prove Green's theorem in a plane
- 4. Find the Fourier transform of f(x) = 1, |x| < 1= 0, |x| > 1

Also evaluate $\int_0^\infty \frac{\sin s}{s} \, ds$. Prove Modulation theorem.

5. Let F(t) have period T>0 so hat F(t+T)=F(t), then $L\{f(t)\} = \frac{\int_{0}^{\infty} e^{-st} F(t) dt}{1 - e^{-st}}$ Show that $L\{sinat - at \ cosat\} = \frac{2a^{2}}{(s^{2} + a^{2})}$

Marks: 50

Marks: 70

10

- 6. If F=3xyi- $y^2 j$, evaluate $\int_c F dr$ where C is the curve in the XY plane $y = 2x^2$ from (0,0) t0 (1,2). Find the work done when a force $F = (x^2 y^2 + x)i (2xy + y)j$ moves a particle in XY plane from (0,0) to (1,1) along the parabola $y^2 = x$.
- 7. Find the Z transform of sin(3n+5) and $3n-4sin\frac{n\pi}{4}+5x$
- 8. If $f = f_1 i + f_2 j + f_3 k$ is a differentiable vector point function, then $\operatorname{curl} f = \left(\frac{\partial f_2}{\partial y} - \frac{\partial f_2}{\partial z}\right) i + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_2}{\partial x}\right) j + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) k.$ 5

Apply Divergence theorem to evaluate $\iint_{S} [(x + z)dydz + (y + z)dxdz + (x + y)dxdy] \text{ where S is the}$ surface of the sphere $x^{2} + y^{2} + z^{2} = 4$

==***==

5+5=10

5+5=10

5+5=10

REV-00 MSE/7/12

*)

I.

MSE	2/7/12		
	M. F ENGINEERING	SC. ELECTRONICS FIRST SEMESTER MATHEMATICS AND S MSE - 101	TATISTICS
		[PART-A: Objective]	
<u>C</u> ł	noose the correct answer from th	e following:	
1.	The Laplace transform of t^n is		
	a. <u>m</u>	$\frac{n!}{n!}$	
	S .	S^{n-1}	
	$\frac{n!}{s^{n+1}}$	d. None of	them
2.	The Z transform of n^p , p being	g a positive integer	
	a. $-z \frac{d}{dz} Z(n^{p-1})$		
	b. $z \frac{d}{d} Z(n^{p+1})$	C. Z	
	dz	d. np	
3.	If $Z(u_n) = U(Z)$, then we	e have	
	a. $Z(a^{-n}u_n) = U(az)$		
	b. $Z(a^{-n}u_n) = U(1)$		
	c. $Z(a^{-n}u_n) = U(z/a)$		
	$d. Z(a^{-n}u_n) = U(a)$		
4.	If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, th	en \mathcal{U}_2 is	
	a. 1 b. 2	c. 3	
F		u , 0	
5.	The value of $ {n_{\! p_r}} $ is		
	a. n _{cr}	n_{c_r}	-2
	^{b.} $n_{c_r}r!$		
		d. None c	of these

2017/12

1×20=20

6.	The number of permutations of all t a. 36250 b. 277200	he letters of the word ENGINEERING c. 297840 d. 7666340	
7.	The mean and standard deviation of a binomial distribution is :		
	a. n – p and npq	c. np and \sqrt{npq}	
	b. np and npq	d. None of these	
8.	By convolution theorem of Z transfo	formation if $Z^{-1}[U(z)] = u_n$ and	
	$Z^{-1}[V(z)] = v_n$ then $Z^{-1}[U(z)]$	Z(Z) [$Z(Z)$] is equal to	
	a. $\mathcal{U}_n * \mathcal{V}_n$	a II yy	
	b. uv	d. None of these	
9.	The probability of r successes in a binomial distribution is		
	a. $P(r) = n_{c_n} p^r q^n$	c. $P(r) = n_{c_n} p^{n-r} q^{n-r}$	
	b. $P(r) = n_{c_r} p^r q^{n-r}$	d. $P(r) = n_{c_r} p^r q^r$	
10.	The Z transform of $(n+1)^2$ is		
	a. $\frac{Z}{Z-1}$	c. $\frac{z^2(2Z)}{(z-1)^2}$	
	b. $\frac{z^2(2Z+1)}{(z-1)^3}$	d. z	
11.	If $r = \sin t i + \cos t j + t$	k , then $\left \frac{dr}{dt}\right $ is	
	a. $\sqrt{3}$	c. $\sqrt{2}$	
	b. 4	d. 1	
12.	If f and g are two scalar point functi	on, then $f\Delta g+g\Delta f$ is	
	^{a.} $\nabla (fg)$	c. $\nabla(fg)$	
	^{b.} $\nabla \times (fg)$	a. $f \Delta g$	
13.	A vector V is said to be solenoidal		
	a. Div $V=1$ b. curl $V=0$	c. curl v =1 d. div V=0	

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

14. A vector f is said to be irrotational if c. $\nabla f = 0$ a. $\nabla f = 0$ ^{b.} $\nabla \times f = 0$ d. None of these

15. Suppose V is the volume bounded by a closed pieciewise smooth surface S. Suppose F(x, y, z) is a vector function of position which is continuous and has continuous first

partial derivatives in V. Then, $\iiint_{v} \nabla F dv = \iint_{v} F \cdot n ds$ where n is the outward

drawn unit normal vector to S is

- a. Green's Theorem
- **b.** Divergence theorem of Gauss
- **16.** For half range cosine series, we have

a. $a_n = 0, b_n \neq 0$ b. $b_n = 0, a_n \neq 0$

17. A function F(x) in Fourier series is even if

a.
$$\int_{-1}^{1} F(x) dx = 0$$

b. $\int_{-1}^{1} F(x) dx = 2$
c. $\int_{-1}^{1} F(x) dx = \int_{0}^{1} F(x) dx$
d. $\int_{-1}^{1} F(x) dx = 2 \int_{0}^{1} F(x) dx$

18. The function F(x) is called the inverse Fourier sine transform of $f_s(s)$ *i.e*

 $F(x) = F_s^{-1}{f_s(s)}$ is equal to a. $\frac{2}{\pi} \int_{a}^{a} f_{s}(s) sinsxds$ $f_s(s)sinsxds$ b. $\frac{\pi}{2} \int_{a}^{a} f_{s}(s) sinsxds$ d. None of these

19. The relation between Fourier and Laplace transform is a. $F(t) = L^{-1}\{\varphi(t)\}$ $\mathbf{C} \cdot F\{F(t)\} = L\{\varphi(t)\}$ b. $L\{\varphi(t)\} = F^{-1}\{F(t)\}$

$$d. \, \phi(t) = L$$

==***==

20. The distribution function F(x) of the discrete variate X is defined by

a. $F(x) = \sum_{i=1}^{x} p(x_i)$ b. F(x) = 0

F(x) = 1d. None of these

c. Hermite's formula

c. $a_n = 0, b_n = 0$

d. None of these

d. Gradient

[PART (A) : OBJECTIVE] Serial no. of the main Answer sheet **Duration : 20 Minutes** Course : Semester : Roll No : Enrollment No : _____ Course code : _____ Course Title : Session : 2017-18 Date : ************ Instructions / Guidelines > The paper contains twenty (20) / ten (10) questions. > Students shall tick (\checkmark) the correct answer. > No marks shall be given for overwrite / erasing. > Students have to submit the Objective Part (Part-A) to the invigilator just after

completion of the allotted time from the starting of examination.

Full Marks	Marks Obtained
20	

Scrutinizer's Signature

Examiner's Signature

Invigilator's Signature