REV-00 MSC/114/120

M.Sc. CHEMISTRY THIRD SEMESTER PHYSICAL CHEMISTRY-III **MSC-303**

Duration: 3 Hrs.

PART: A (OBJECTIVE) = 20 PART : B (DESCRIPTIVE) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

- 1. i. What is electrical double layer? How is it formed at the (5+5=10)electrode/electrolyte interface? Define Helmholtz-Perrin model for electrical double layer. Apply this model to relate the surface tension change with potential of an electrolyte solution.
 - ii. What do you mean by E- type delayed fluorescence? How can you proof that the ratio of quenching efficiency of E- type delayed fluorescence to that of phosphorescence is independent of efficiency of triplet formation.
- 2. Define homogeneous and heterogeneous catalyzed reaction. Write at (2+3+5=10)least two disadvantages of homogeneous catalyzed reaction and two advantages of heterogeneous catalyzed reaction. Discuss the mechanism and kinetics of heterogeneously catalyzed reaction.
- 3. State Franck-Condon principle. Discuss the fate of the excited states (2+3+5=10)with the help of Jablonski diagram. What are photosensitizers and discuss the role of photosensitizers in the photodynamic therapy of tumors?
- What is quenching of fluorescence? What is the basic difference (2+3+5=10)4. between Static and dynamic quenching? Discuss the Stern-Volmer mechanism of fluorescence Quenching. Write the physical significance of stern-Volmer plot.
- 5. i) Draw the structure of a diptide. Use R to represent the side chains of (2+3+5=10)an amino acid.
 - ii) Discuss the primary, secondary, tertiary and quaternary structures of protein.
 - iii) Discuss the thermodynamics of biopolymer solutions.

Marks: 70

Marks: 50

- 6. What are passive and active transport of ions across cell membrane? Discuss the mechanism of primary active transport with the help of Na⁺-K⁺ pump. What are antiporter and symporter?
- 7. i. Write the expression of ion-solvent interactions in terms of Born Model. What is the importance of this free energy change?

- iii. Calculate the entropy and enthalpy change of ion-solvent interaction in terms of Born theory.
- 8. i. Write the fundamental electrocapillary equation for polarizable interfaces.
- (2+8=10)

ii. Using the above fundamental equation derive the expression of surface excess of a species *i* obtained from the plot of interfacial tension versus mean activity of the electrolyte taken under conditions of constant applied potential.

= = * * = =

(2+5+3=10)

(2+4+4=10)

ii. Starting from the expression of electrostatic potential, calculate the work of charging an ion in vaccum and inside a solvent in-terms of Born model.

REV-00 MSC/114/120

M.Sc. CHEMISTRY THIRD SEMESTER PHYSICAL CHEMISTRY-III MSC-303

[PART-A: Objective]

1. State true or false: (any five)

1×5=5

2017/12

- i. In the spontaneous chemical reaction of a galvanic cell, electrons flow from the cathode to the anode.
- ii. In homogeneous catalysis, the catalyst does not appear in the rate law.
- iii. The alpha helix, beta pleated sheet and beta turns are examples of protein secondary structure.
- In photochemical reactions, the absorption of light takes place in the primary processes only.
- v. Only the fraction of light that is absorbed by the substance can bring about a chemical change.
- vi. In a Biopolymer-solvent system when '+ Δ H' is very high and exceeds the 'T Δ S' value, the dissolution cannot take place and the polymer is not affected by the solvent.
- vii. In glycolysis fructose-1,6-bisphosphate is split into glyceraldehyde-3-phosphate and dihydroxyacetone phosphate.

2. Choose the correct answer from the following :

- i. One Einstein of energy is:
 - a. $E = \frac{2.859}{\lambda} \times 10^5$ cal mol⁻¹
 - b. $E = \frac{2.859}{3} \times 10^5$ kcal mol⁻¹

c.
$$E = \frac{2.859}{\lambda} \times 10^5 \,\mathrm{J \, mol^{-1}}$$

$$E = \frac{2.859}{\lambda} \times 10^5 \, \text{kJmol}^{-1}$$

- ii. For a reaction that obeys Einstein's law:
 - a. $\phi = 1$
 - **b.** $\phi > 1$
 - c. $\phi < 1$
 - **d.** $\phi = \alpha$

- iii. The glow of fireflies is due to the aerial oxidation of luciferin. It is an example of:
 - a. Fluorescence
 - b. Phosphorescence
 - c. Chemiluminiscence
 - d. Quenching
- iv. The mean activity coefficients of 5.0 x 10-3mol kg-1KCl (aq) at 25 °C is:
 - **a.** 0.92
 - **b.** -0.036
 - **c.** 0.036
 - **d.** -0.92

[Note: $\log \gamma_{\pm} = -|Z_{\pm}Z_{\pm}|AI^{\frac{1}{2}}$; A (Debye Huckel limiting law constant) = 0.509 and I is the ionic strength of the solution.

- v. For the concentration cell M|M⁺(aq, 0.01 mol dm⁻³)|| (M⁺(aq, 0.1 mol dm⁻³)|M the EMF (E) of the cell at a temperature (T) equals:
 - a. $2.303 \frac{RT}{F}$ b. $-2.303 \frac{RT}{F}$ c. $E_{M^{+}|M}^{0} + 2.303 \frac{RT}{F}$ d. $E_{M^{+}|M}^{0} - 2.303 \frac{RT}{F}$
- vi. Allowed transition occur if transition probability (f) is:
 - **a.** f = 0**b.** f = 1
 - c. $f \neq 0$
 - **d.** $f \neq 1$
 - **1.** 171
- vii. E-type delayed fluorescence is known as:
 - a. a-fluorescence
 - b. b-fluorescence
 - c. a-phosphorescence
 - d. b-phosphorescence
- viii. During dark phase (dark reactions) of photosynthesis......is oxidized andis reduced.
 - a. CO₂ and water
 - b. Water and CO₂
 - c. Water and NADP
 - d. NADPH₂ and CO₂

1×15=15

- ix. Gycolytic reversal is a part of:
 - a. aerobic oxidation.
 - b. anaerobic respiration.
 - c. light phase of photosynthesis.
 - d. dark phase of photosynthesis.
- x. Which of the following statements about the TCA cycle is correct?
 - a. Oxygen is used to oxidize the acetyl group carbons of acetyl-CoA in the TCA cycle.
 - b. Three molecules of NADH and one molecule of FADH_2 are produced in one turn of the TCA cycle.
 - **c.** Oxygen is not used in the TCA cycle, so the cycle can occur in anaerobic conditions.
 - **d.** The TCA cycle produces the water that is formed during the complete oxidation of glucose.
- xi. What is the advantage of having two lipid bilayers around mitochondria?
 - a. They act as a store of phospholipids.
 - b. They prevent the entry of chemicals into mitochondria.
 - c. They protect the cell from free radicals.
 - d. They maintain a proton gradient.
- xii. In the Langmuir-Hinshelwood mechanism of heterogeneous catalyzed reaction, the reaction occurs:
 - a. between two adsorbed species.
 - b. between one adsorbed species and on fluid phase species.
 - c. between two fluid phase species.
 - d. none of the above.
- xiii. Which of the following statements about Michaelis-Mentan Kinetics is correct?
 - **a.** K_m, the Michaelis constant, is defined as the concentration of substrate required for the reaction to reach maximum velocity.
 - b. $K_{m\nu}$ the Michaelis constant, is defined as the dissociation constant of the enzyme-substrate complex.
 - c. K_m, the Michaelis constant, is expressed in terms of the reaction velocity.
 - d. K_{m} , the Michaelis constant, is a measure of the affinity the enzyme has for its substrate.
- xiv. Phosphorescence is represented as:
 - a. $T_1 \rightarrow S_0 + h\vartheta$
 - b. $S_1 \rightarrow S_0 + h\vartheta$
 - c. $T_1 \rightarrow S_0 + \Delta$
 - d. $S_1 \rightarrow S_0 + \Delta$
- **xv.** The Fluorescence life time of a molecule in solution is 10 ns. If the fluorescence quantum yield is 0.1, the rate constant of fluorescence decay is:

a. $1 \times 10^9 \text{ s}^{-1}$ b. $1 \times 10^8 \text{ s}^{-1}$ c. $1 \times 10^7 \text{ s}^{-1}$ d. $9 \times 10^7 \text{ s}^{-1}$

UNIVERSITY OF SCIENCE & TECHNOLOGY, MEGHALAYA

verting Exectance		F (A) : OBJECTIVE] ration : 20 Minutes	Serial no. of the main Answer sheet		
rollment No		Course code	:		
ourse Title :					
ssion :	2017-18	Date :	***		
	Instru	uctions / Guidelines			
		0) / ten (10) questions.			
 > Students shall tick (✓) the correct answer. > No marks shall be given for overwrite / erasing. 					
	completion of the allotted time from the starting of examination.				

Full Marks	Marks Obtained
20	
Constant of Constant	

Scrutinizer's Signature

Co

Se

En

Co

Se

= = * * = =