REV-00
MSC/02/08

REV-00 MSC/02/08	2017/06			
M.Sc. CHEMISTRY Second Semester (Repeat) SPECTROSCOPY-I (MSC - 204)				
Duration: 20 minutes	Marks – 20			
(PART A - Objective Type)				
I. Choose the correct answer:	1×20=20			
1. For the molecule CH ₃ CHO a) $I_a \neq I_b \neq I_c$ c) $I_a = I_b < I_c$	b) $I_a = I_b > I_c$ d) $I_a = 0$			
 2. The spacing between rotations spacing of DF molecule is a a) 21cm⁻¹ c) 10.5cm⁻¹ 	onal lines of HF molecule is 40cm ⁻¹ . The corresponding approximately b) 7.5cm ⁻¹ d) 30cm ⁻¹			
3. Distance between the firsta) 12Bc) 8B	stokes and first anti stokes lines of rotational Raman spectra is b) 4B d) 20B			
 4. Pure rotational spectrum is a) H Br c) H₂ 	exhibited by the molecule b) CH ₄ d) O ₂			
 5. The nucleus which has spin a) ³⁵Cl c) ¹⁵N 	$a \frac{3}{2} is$ b) ¹ H d) ¹⁴ N			
 6. Larmor frequency is given a) ^{IBz}/_{2πμ} c) ^{IBz}/_{2πb} 	by b) $\frac{\mu B z}{2\pi i}$ d) $\frac{\hbar B z}{2\pi i}$			
 7. The nucleus which do not e a) ¹¹B c) ³¹P 	exhibit NMR spectra is b) ¹⁸ O d) ¹⁹ F			
 8. Pure rotational Raman spec a) C₂H₂ c) BF₃ 	b) CH ₄ d) SO ₂			
9. IR inactive molecule isa) COc) H₂O	b) O ₂ d) NH ₃			

10.The molecule BF₃ isa) Prolatec) Spherical top	b) Oblate d) Asymmetric top
11.The frequency range 7.5×10a) IRc) Visible	0 ¹⁴ Hz3.75×10 ¹⁴ Hz belongs to the region of b) Micro-wave d) Radio frequency
12. The degeneracy of rotationa a) J (J+1)	al energy levels is b) J ² (J+1) ²
c) (2 J+1)	d) $\sqrt{J(J+1)}$
13. The frequency of first hot b a) $\overline{W_e}$ (i-2x _e) c) $\overline{W_e}$ (1-4x _e)	and is b) $2\overline{W_e}(1-3x_e)$ d) $2\overline{W_e}(1-2x_e)$
14.The distance between the 1 th a) 2B c) 4B	 st rotational spectral lines in P and R branch is b) 6B d) 8B
15 Non zero value of $\frac{d\alpha}{dr}$ of m	alecule are found in the spectroscopy of
a) IR c) Raman	b) NMR d) ESR
16.Radiations of wavelength raa) Halogen lampc) Nernst filament	ange 200400nm are obtained from b) Mercury arc d) Deuterium lamp
17.At low pressure line width a) Heisenberg uncertainty rec) Life time broadening	of rotational spectral lines are due to elation b) Collision broadening d) Doppler effect
18.Successive lines are separata) N₂c) CO	ted by 8 B in the Raman rotational spectrum of b) HCl d) O ₂
19. The selection rule for R and a) $\Delta J = 0, 1$ c) $\Delta J = 1, 0$	d P branches of rotational spectral lines are respectively b) $\Delta J = -1, +1$ d) $\Delta J = +1, -1$
20.The number of multiplet of	- OH proton in pure and dry sample of ethanol in NM
a) One c) Five	b) Two d) Three
