M.Sc. CHEMISTRY
 Second Semester INORGANIC CHEMISTRY-II
 (MSC - 203)

Duration: 3Hrs.

Full Marks: 70
Part-A $($ Objective $)=20$
Part-B $($ Descriptive $)=50$
(PART-B: Descriptive)

Duration: $\mathbf{2}$ hrs. 40 mins.
Marks: 50

Answer any four from Question no. 2 to 8 Question no. 1 is compulsory.

1. (a) Prove that the product of any two group operations must also be a member of the group.
(b) Write short notes on tungsten blue and tungsten bronze.
2. (a) Find the classes of symmetry elements and the point group of the molecule-

(b) Explain what is Chelate and Macrocyclic effect?
3. (a) If a point has coordinate (x, y, z), and you carry out a rotation $C_{2}(Z)$, the new coordinate are say ($\mathrm{X}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}$) Express the operation in matrix format.
(b) Explain how to determine the stability constant of a complex by Jobs method.
$(5 \times 2=10)$
4. Explain the structure of Ammonia $\left(\mathrm{NH}_{3}\right)$ molecule with symmetry adopted linear combination of atomic orbital.
5. Find the IR and Raman active vibrations of $\mathrm{H}_{2} \mathrm{O}$ molecule by finding the reducible and irreducible representations.
6. What is called ion-exchange chromatography? Explain the principle, types and application of this type of chromatography.
7. Explain details of dinitrogen and dioxygen complexes.
8. (a) What are metal carbonyl complexes? Discuss structure and bonding of these complexes with examples. $(5 \times 2=10)$
(b) Find the multiplier associated with the symmetry operation $\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{xz}}, \sigma_{\mathrm{yz}}$, for a p_{y} orbital and hence its irreducible representation for $C_{2 v}$ point group.

Character table for $\mathrm{C}_{2 v}$ point group						
	E	$\mathrm{C}_{2}(\mathbf{z})$	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$	linear, rotations	quadratic
A_{1}		1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
A_{2}		1	-1	-1	R_{z}	xy
B_{1}		-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}		-1	-1	1	y, R_{x}	yz

Character Table for $\mathrm{C}_{3 \mathrm{v}}$

M.Sc. CHEMISTRY
 Second Semester
 INORGANIC CHEMISTRY-II
 (MSC - 203)

(PART A - Objective Type)

Choose the correct answer

1. For $\mathrm{C}_{4 \mathrm{v}}$ point group what will be the representation if the character values are-
(i) A_{1}
(ii) A_{2}
(iii) B_{1}
(iv) B_{2}
2. For $\mathrm{D}_{3 \mathrm{~h}}$ point group what will be the representation if the character values are$X\left(\mathrm{C}_{3}\right)=+1$ and $\mathrm{X}\left(\mathrm{C}_{2}\right)=+1 \quad$ and $\mathrm{X}\left(\sigma_{\mathrm{h}}\right)=-1$
(i) A_{1}
(ii) $\mathrm{A}_{2}{ }^{\prime}$
(iii) $\mathrm{A}_{1}{ }^{\prime \prime}$
(iv) $\mathrm{A}_{2}{ }^{\prime \prime}$
3. For Sn, n is always 3 or larger because $\mathrm{S}_{1}=\ldots \ldots \ldots \ldots \ldots \ldots$ and $\mathrm{S}_{2}=$respectively are-
(i) $\mathrm{C}_{2}, \mathrm{i}$
(ii) $\mathrm{i}, \mathrm{C}_{2}$
(iii) σ, i
(iv) i, σ
4. The plane of symmetry parallel to the principal rotational axis and bisecting the angle between two C_{2} axis is called the-
(1) σ_{d}
(ii) σ_{v}
(iii) σ
(iv) σ_{h}
5. Each operation is performed relative to a point, line or..............called a symmetry element.
(i) plane
(ii) angle
(iii) rotation
(iv) reflection
6. Match the point group symmetry of following molecules- $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{XeF}_{4}, \mathrm{PF}_{5}$.
(i) $\mathrm{D}_{\text {ah }}, \mathrm{T}_{\mathrm{d}}, \mathrm{D}_{4 \mathrm{~h}}, \mathrm{D}_{3 \mathrm{~h}}$
(ii) $\mathrm{D}_{\text {ah }}, \mathrm{T}_{\mathrm{d}}, \mathrm{D}_{3 \mathrm{~h}}, \mathrm{D}_{4 \mathrm{~h}}$
(iii) $\mathrm{D}_{\text {ah }}, \mathrm{D}_{3 \mathrm{~h}}, \mathrm{~T}_{\mathrm{d}}, \mathrm{D}_{4 h}$
(iv) $\mathrm{D}_{\text {ah }}, \mathrm{D}_{3 \mathrm{~h}}, \mathrm{D}_{4 \mathrm{~h}}, \mathrm{~T}_{\mathrm{d}}$
7. For diamagnetic (1,10-phenanthroline) $)_{3} \mathrm{Fe}^{(\mathrm{II})}$ complex, $\mathrm{K}_{3}>\mathrm{K}_{2}$, for the change from bis- to tris- complex, because of-
(i) change in hybridization (ii) steric factor
(iii) statistical factor
(iv) high spin - low spin change
8. Which is correct Irving Williams's series?
(i) $\mathrm{Mn}^{2+}>\mathrm{Fe}^{2+}>\mathrm{Co}^{2+}>\mathrm{Ni}^{2+}>\mathrm{Cu}^{2+}>\mathrm{Zn}^{2+}$
(ii) $\mathrm{Mn}^{2+}>\mathrm{Fe}^{3+}>\mathrm{Co}^{2+}>\mathrm{Ni}^{2+}>\mathrm{Cu}^{2+}<\mathrm{Zn}^{2+}$
(iii) $\mathrm{Mn}^{2+}<\mathrm{Fe}^{2+}<\mathrm{Co}^{2+}<\mathrm{Ni}^{2+}<\mathrm{Cu}^{2+}>\mathrm{Zn}^{2+}$
(iv) $\mathrm{Mn}^{2+}<\mathrm{Fe}^{3+}<\mathrm{Co}^{3+}<\mathrm{Ni}^{2+}<\mathrm{Cu}^{2+}>\mathrm{Zn}^{2+}$
9. The number of IR active v co stretching for $M(C O)_{6}$ complex is-
(i) one
(ii) two
(iii) three
(iv) six
10. The Point group symmetry of $\mathrm{CH}_{2} \mathrm{ClBr}$ is-
(i) C_{1}
(ii) C_{s}
(iii) T_{d}
(iv) C_{i}
11. The order of O_{h} point group is-
(i) 24
(ii) 36
(iii) 48
(iv) 12
12. An octahedral complex on elongation or contraction in one C_{4} axis changes the point group symmetry to-
(i) $\mathrm{D}_{2 \mathrm{~h}}$
(ii) $\mathrm{D}_{3 \mathrm{~h}}$
(iii) $\mathrm{D}_{4 \mathrm{~h}}$
(iv) O_{h}
13. The commonly used chromatographic methods for qualitative drug analysis are-
(i) GLC
(ii) TLC
(iii) HPLC
(iv) All of the above
14. Which of the following are the basic mobile phases for paper chromatography?
(i) Water- phenol
(ii) Formamide-chloroform
(iii) Formamide-benzene
(iv) All of the above
15. Which of the following materials are used as binders in TLC?
(i) Plaster of paris
(ii) Starch
(iii) Plastic dispersion
(iv) All of the above
16.Anion exchange resins with similar inorganic groups are-
(i) Quaternary ammonium salt
(ii) Tertiary ammonium salt
(iii) Quarternary sulphonium salt
(iv) All of the above
16. Column for gas- liquid chromatography can fabricated from-
(i) Glass
(ii) Stainless steel
(iii) Copper
(iv) All of the above
17. Maximum magnetic moment shown by-
(i) d^{5}
(ii) d^{6}
(iii) d^{7}
(iv) d^{8}
18. Which of the following metals has more than one oxidation state?
(i) Ca
(ii) Sr
(iii) Mn
(iv) Zn
19. Which of the following does not form isopoly acid in acidification?
(i) $\mathrm{Na}_{2} \mathrm{MoO}_{4}$
(ii) $\mathrm{Na}_{2} \mathrm{WO}_{4}$
(iii) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
(iv) $\mathrm{Na}_{3} \mathrm{VO}_{4}$
