REV-00 MSC/104/110

> M.Sc. CHEMISTRY Second Semester INORGANIC CHEMISTRY-II (MSC - 203)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

Answer any *four* from *Question no.* 2 to 8 *Question no.* 1 is compulsory.

- (a) Prove that the product of any two group operations must also be a member of the group.
 - (b) Write short notes on tungsten blue and tungsten bronze. $(5 \times 2=10)$
- 2. (a) Find the classes of symmetry elements and the point group of the molecule-

(b) Explain what is Chelate and Macrocyclic effect? (5×2=10)

- (a) If a point has coordinate (x, y, z), and you carry out a rotation C₂ (Z), the new coordinate are say (X', y', z') Express the operation in matrix format.
 - (b) Explain how to determine the stability constant of a complex by Jobs method.

 $(5 \times 2 = 10)$

- Explain the structure of Ammonia (NH₃) molecule with symmetry adopted linear combination of atomic orbital. (10)
- Find the IR and Raman active vibrations of H₂O molecule by finding the reducible and irreducible representations. (10)

2017/06

- 6. What is called ion-exchange chromatography? Explain the principle, types and application of this type of chromatography. (10)
- 7. Explain details of dinitrogen and dioxygen complexes.
- 8. (a) What are metal carbonyl complexes? Discuss structure and bonding of these complexes with examples. (5×2=10)
 - (b) Find the multiplier associated with the symmetry operation E, C_2 , σ_{xz} , σ_{yz} , for a p_y orbital and hence its irreducible representation for C_{2v} point group.

 $(5 \times 2 = 1)$

Character table for C _{2v} point group									
E	$C_2(z)$	$\sigma_v(xz)$	$\sigma_v(yz)$	linear, rotations	quadratic				
1	1	1	1	Z	x^2, y^2, z^2				
1	1	-1	-1	Rz	xy				
1	-1	1	-1	x, R _y	XZ				
1	-1	-1	1	y, R _x	yz				
	E 1 1 1 1	E C ₂ (z) 1 1 1 1 1 -1	$\begin{array}{c c} \mathbf{E} & \mathbf{C}_{2} (\mathbf{z}) & \boldsymbol{\sigma}_{v} (\mathbf{x} \mathbf{z}) \\ \hline 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \\ \end{array}$	E C_2 (z) $\sigma_v(xz)$ $\sigma_v(yz)$ 1 1 1 1 1 1 -1 -1 1 -1 1 -1	E C_2 (z) $\sigma_v(xz)$ $\sigma_v(yz)$ linear, rotations 1 1 1 2 1 1 -1 Rz 1 -1 -1 Rz 1 -1 1 x, Ry				

Character table for C2v point group

Character Table for C_{3v}

C3v	E	2C3	3 v	L
A1 A2 E	1	1	1	z
A2	1	1	-1	Rz
E	2	-1	0	(x, y)(Rx, Ry)

2017/06

Marks - 20

 $1 \times 20 = 20$

M.Sc. CHEMISTRY Second Semester INORGANIC CHEMISTRY-II (MSC - 203)

Duration: 20 minutes

(PART A - Objective Type)

I. Choose the correct answer:

1. For C $_{4v}$ point group what will be the representation if the character values are-X(C₄) = -1, X(C₂) = 1 and X (σ_v) = 1 (i) A $_1$ (ii) A $_2$ (iii) B $_1$ (iv) B $_2$

- 2. For D _{3h} point group what will be the representation if the character values are-X(C₃) = +1 and X(C₂) = +1 and X(σ_h) = -1 (i) A₁' (ii) A₂' (iii) A₁'' (iv) A₂''
- 3. For Sn, n is always 3 or larger because $S_1 = \dots$ and $S_2 = \dots$, respectively are-(i) C_2 , i (ii) i, C_2 (iii) σ , i (iv) i, σ
- 4. The plane of symmetry parallel to the principal rotational axis and bisecting the angle between two C₂ axis is called the (i) σ_d
 (ii) σ_v
 (iii) σ
 (iv) σ_h
- 5. Each operation is performed relative to a point, line or.....called a symmetry element. (i) plane (ii) angle (iii) rotation (iv) reflection
- 7. For diamagnetic (1,10-phenanthroline)₃Fe ^(II) complex, K₃ > K₂, for the change from bis- to tris- complex, because of(i) change in hybridization (ii) steric factor
 (iii) statistical factor (iv) high spin low spin change
- 8. Which is correct Irving Williams's series? (i) $Mn^{2+} > Fe^{2+} > Co^{2+} > Ni^{2+} > Cu^{2+} > Zn^{2+}$ (ii) $Mn^{2+} > Fe^{3+} > Co^{2+} > Ni^{2+} > Cu^{2+} < Zn^{2+}$ (iii) $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$ (iv) $Mn^{2+} < Fe^{3+} < Co^{3+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$
- 9. The number of IR active v _{CO} stretching for M(CO)₆ complex is-(i) one (ii) two (iii) three (iv) six

	The Point grou (i) C ₁	up symmetry of C (ii) C _s	H ₂ ClBr (iii) T		(iv) C _i	
	The order of (i) 24	D _h point group is- (ii) 36	(iii) 4	8	(iv) 12	
2	An octahedral symmetry to- (i) D _{2h}	complex on elong	gation or (iii) E		in one C ₄ axis chan (iv) O _h	ges the point group
				nethods for qu	ualitative drug anal (iv) All of the abo	
4	(i) Water- phe		Formam	ide -chlorofo	or paper chromatog orm	graphy?
	Which of the f (i) Plaster of p (iii) Plastic dis		Starch	ed as binders ne above	in TLC?	
	(i) Quaternary	ge resins with sim ammonium salt ry sulphonium sa		-	ammonium salt	
7	.Column for ga (i) Glass (iii) Copper		Stainless		d from-	
	.Maximum mag (i) d ⁵	gnetic moment sh (ii) d ⁶	own by- (iii) d		(iv) d ⁸	
	Which of the f (i) Ca	following metals l (ii) Sr	nas more (iii) N		dation state? (iv) Zn	
0	Which of the f (i) Na ₂ MoO ₄ (iii) Na ₂ CrO ₄	following does no (ii) Na ₂ Wu (iv) Na ₃ Wu	O ₄	opoly acid in	acidification?	
