REV-00 MSC/04/10 2017/08

# M.Sc. CHEMISTRY First Semester (Repeat) PHYSICAL CHEMISTRY-I (MSC - 103)

### **Duration: 3Hrs.**

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

#### (PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

(10)

## Answer any *four* from *Question no*. 2 to 8 *Question no*. 1 is compulsory.

- 1. Starting from the basic postulates of kinetic theory of gases, derive kinetic gas equation. Calculate the value of ideal gas equation. (10)
- Write down the Schrodinger wave equation for a particle of mass "µ" confined in a one dimensional well of length "L" moving along x direction such that the potential V is zero within the well and V = ∞ outside the well. Calculate the wave function and the energy of the particle.
- Define average velocity, most probable velocity and root mean square velocity. Derive mathematical expression for three types of molecular velocity. (4+6=10)
- 4. (a) What are number average and weight average molecular weight of a polymer.
  (b) Equal numbers of molecules with M<sub>1</sub> = 10,000 and M<sub>2</sub> = 100,000 are mixed, calculate number average and weight average molecular weight of the polymer.
  - (c) Equal masses of polymers molecules with M<sub>1</sub> = 10,000 and M<sub>2</sub> = 100,000 are mixed, calculate number average and weight average molecular weight of the polymer.
     (4+3+3=10)
- 5. Determine the kinetics of free radical polymerization.

| 6. | What is surface tension of a liquid? How surface tension of liquid can be          |           |  |  |
|----|------------------------------------------------------------------------------------|-----------|--|--|
|    | determined by capillary rise method.                                               | (10)      |  |  |
| 7. | (a) For one mole of an ideal gas show that $C_p - C_v = R$ , where the symbols     | represent |  |  |
|    | usual meaning.                                                                     | (4)       |  |  |
|    | (b) What are excess thermodynamic functions? Explain an example.                   | (3)       |  |  |
|    | (c) Explain the physical significance of entropy.                                  | (3)       |  |  |
| 8. | Represent in a single plot the variation of free energy, entropy and enthalpy as a |           |  |  |
|    | function of mole fraction of one of the component (say $x_1$ ) for the mixin       | g of two  |  |  |
|    | ideal gases.                                                                       | (2)       |  |  |
|    | (b) Using the plot above, find the value of $x_1$ that the largest impact on the   |           |  |  |
|    | thermodynamic quantities on the final solution.                                    | (3)       |  |  |
|    | (c) Describe the viscosity method for the determination of molar masses of         |           |  |  |
|    | macromolecules.                                                                    | (5)       |  |  |

\*\*\*\*\*

| MSC/04/10<br>MSC/04/10<br>M.Sc. CHEMISTRY<br>First Semester (Repeat)<br>PHYSICAL CHEMISTRY-I<br>(MSC - 103)                                                                                                                                      | 2017/08           | <ul> <li>7. The average speed of H2, N2 and Cl2 gas molecules are in the order:</li> <li>(a) H<sub>2</sub> &gt; N<sub>2</sub> &gt; Cl<sub>2</sub></li> <li>(b) Cl<sub>2</sub> &gt; N<sub>2</sub> &gt; H<sub>2</sub></li> <li>(c) H<sub>2</sub> &gt; Cl<sub>2</sub> &gt; N<sub>2</sub></li> <li>(d) N<sub>2</sub> &gt; Cl<sub>2</sub> &gt; H<sub>2</sub></li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Duration: 20 minutes<br>(PART A - Objective Type)                                                                                                                                                                                                | <b>Marks – 20</b> | <ul> <li>8. In a van der Waals gas the term which accounts for intermolecular forces is:</li> <li>(a) RT</li> <li>(b) V - b</li> <li>(c) P + a/V<sup>2</sup></li> <li>(d) (PT)<sup>1</sup></li> </ul>                                                                                                                                                              |
| I. Choose the correct answer:                                                                                                                                                                                                                    | 1×20=20           | $(d) (RT)^{-1}$                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>An orbital is:         <ul> <li>(a) A circular tract of an electron in an atom.</li> <li>(b) A one electron wave function.</li> <li>(c) An observable property of the system.</li> <li>(d) A hermitian operator.</li> </ul> </li> </ol> |                   | <ul> <li>9. The compressibility factor is defined as Z = PV/RT, hence find out the incorrect statement.</li> <li>(a) Z depends on pressure at a T.</li> <li>(b) Z is a measure of deviation for real gases.</li> <li>(c) Z is unity for an ideal gas.</li> <li>(d) Z has the unit of gas constant.</li> </ul>                                                      |
| 2. Which is not an example of linear operator?<br>(a) $x^2$<br>(b) $d/dx$<br>(c) $d^2/dx^2$<br>(d) $$                                                                                                                                            |                   | 10.The average velocity of a gas is defined as:<br>(a) $Ca = \sqrt{(8kT/\pi m)}$<br>(b) $Ca = \sqrt{(3kT/m)}$<br>(c) $Ca = \sqrt{(2kT/m)}$<br>(d) None above                                                                                                                                                                                                       |
| <ul> <li>3. The lowest energy is equal to zero for:</li> <li>(a) The hydrogen atom.</li> <li>(b) A rigid rotor.</li> <li>(c) A harmonic oscillator.</li> <li>(d) A particle in a three dimensional box.</li> </ul>                               |                   | <ul> <li>11.The number-average molar mass and weight-average molar mass of a polymer are obtained respectively by:</li> <li>(a) osmometry and viscosity measurements.</li> <li>(b) osmometry and light scattering measurements.</li> <li>(c) ultracentrifuge and viscosity measurements.</li> <li>(d) viscosity and light scattering measurements.</li> </ul>      |
| <ul> <li>4. A 2p<sub>z</sub> orbital of hydrogen atom is an eigen function of:</li> <li>(a) H only</li> <li>(b) H and L2 only</li> <li>(c) H, L2 and Lz only</li> <li>(d) H, L2, Lz and Lx</li> </ul>                                            |                   | <ul> <li>12. The correct expression of mass fraction distribution wk with probability p in step-growth polymerization is:</li> <li>(a) w<sub>k</sub> = kp<sup>(k-l)</sup>(1-p)<sup>2</sup></li> <li>(b) w<sub>k</sub> = kp<sup>(1-k)</sup>(1-p)<sup>2</sup></li> <li>(c) w<sub>k</sub> = kp<sup>(k-1)</sup>(p-1)<sup>2</sup></li> </ul>                            |
| <ul> <li>5. Indicate which of the following functions is acceptable as wav</li> <li>(a) Ψ = x</li> <li>(b) Ψ = e<sup>x</sup></li> <li>(c) Ψ = sin x</li> <li>(d) Ψ = tan x</li> </ul>                                                            | re function?      | <ul> <li>(d) None is correct</li> <li>13. The molar masses of monodisperse and polydisperse polymers obey respectively the conditions: (M<sub>n</sub> = Number average molecular weight and M<sub>w</sub> = Weight average molecular weight).</li> <li>(a) M<sub>n</sub> &gt; M<sub>w</sub> and M<sub>n</sub> &lt; M<sub>w</sub></li> </ul>                        |
| <ul> <li>6. The product PV of a gas has the same units as:</li> <li>(a) Force</li> <li>(b) Force/area</li> <li>(c) Pressure</li> <li>(d) Energy</li> </ul>                                                                                       |                   | (b) $M_n = M_w$ and $M_n < M_w$<br>(c) $M_n < M_w$ and $M_n < M_w$<br>(d) $M_n = M_w$ and $M_n = M_w$                                                                                                                                                                                                                                                              |

### 14.Increasing order of average molecular weight distribution among Mn, Mw, Mv and Mz is:

 $\begin{array}{l} (a) \ M_n < \!\!M_w \ < \!\!M_v < \!\!M_z \\ (b) \ M_n < \!\!M_v \ < \!\!M_w < \!\!M_z \\ (c) \ M_v < \!\!M_z \ < \!\!M_n < \!\!M_w \\ (d) \ M_n < \!\!M_w \ < \!\!M_z < \!\!M_v \end{array}$ 

15.A process, at a particular T and P, will be spontaneous if:

- (a) G is positive
- (b) G is negative
- (c) G is zero
- (d) None above

16. When two ideal gases are mixed, the G<sub>mixing</sub> would be minimum at mole fraction:

(a)  $x_1 = 0.25$ (b)  $x_1 = 0.50$ (c)  $x_1 = 0.75$ (d)  $x_1 = 1.0$ 

17.Pick the INCORRECT expression from the following equations for ideal gas and ideal solutions.

(a)  $G_{mixing} = nRTx_i lnx_i$ (b)  $S_{mixing} = nRx_i lnx_i$ (c)  $V_{mixing} = 0$ (d)  $H_{mixing} = 0$ 

- 18.In the system "liquid water in equilibrium with ice" find out the correct number of phases, components and degrees of freedom (P, C, F)
- (a) (0, 1, 2) (b) (1, 1, 2) (c) (2, 1, 1) (d) (1, 2, 1)

19.Identify the intensive variable.

- (a) Volume
- (b) Entropy
- (c) Molar volume
- (d) Heat capacity

20.Pick the WRONG statement from the following:

- (a) Chemical potential is a state function.
- (b) The reactions in which heat escapes from the system to the surroundings are termed exothermic.
- (c) A system at equilibrium must have definite pressure, temperature and composition.
- (d) If a change takes place with temperature remains constant throughout is called an adiabatic process.

\*\*\*\*\*



| Untening Exceitence                                       |                                   |                |                                                                                                                  |  |
|-----------------------------------------------------------|-----------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|--|
| niversity of Science and Technology, N                    | Date Stamp:                       |                |                                                                                                                  |  |
| 2016-17<br>PAPER CODE:<br>THE PAPER:<br>R                 |                                   |                |                                                                                                                  |  |
| Instructions to Candidates                                | For Objective_                    |                | Session: 2016-17                                                                                                 |  |
| answer booklet has 4 pages. Please check before           | Type Questions                    |                |                                                                                                                  |  |
| whether it is complete or in good condition.              | Page No.                          | Marks          | Course                                                                                                           |  |
| ot write your name anywhere in the answer booklet.        |                                   |                | Roll No.                                                                                                         |  |
| e legibly on both sides of the paper                      |                                   |                |                                                                                                                  |  |
| may use some space for any rough notes or calculation     |                                   |                | Enrollment No                                                                                                    |  |
| nswer booklet if you need. These rough notes,             |                                   | 1.1.1.1.1.1.1  | Semester                                                                                                         |  |
| ions must be scored out before submitting the answer      |                                   |                | Name of the Paper                                                                                                |  |
|                                                           |                                   |                |                                                                                                                  |  |
| t bring any book or loose paper in the examination        |                                   |                |                                                                                                                  |  |
| t bring any book of loose paper in the examination        | Total                             |                | Paper Code                                                                                                       |  |
| t tear any page from the answer booklet.                  | For Descriptive Type<br>Questions |                | and the second |  |
| t write anything on the question paper or blotting        | Question No. Marks                |                |                                                                                                                  |  |
| r any pieces of paper while you are in the examination    |                                   |                |                                                                                                                  |  |
|                                                           |                                   |                |                                                                                                                  |  |
| ct of indiscipline or misbehavior in the examination hall |                                   |                |                                                                                                                  |  |
| It in your expulsion.                                     |                                   |                |                                                                                                                  |  |
| aminee is allowed to leave the examination hall until     |                                   |                |                                                                                                                  |  |
| tes lapse after the commencement of the examination.      |                                   | 1              |                                                                                                                  |  |
| tional answer sheet will be supplied after the main       | Constant a                        |                | and the first of                                                                                                 |  |
| booklet is completed.                                     |                                   |                |                                                                                                                  |  |
|                                                           |                                   |                |                                                                                                                  |  |
|                                                           |                                   |                |                                                                                                                  |  |
|                                                           | Total                             | and the second |                                                                                                                  |  |
|                                                           | Grand Total                       |                | :                                                                                                                |  |

Scrutinizer's Signature

SESSION

COURSE

NAME OF

SEMESTE

1. This

writing

2. Do n
 3. Write

4. You

on the a

calculat

booklet

5. Do no

6. Do no

7. Do no

paper o

8. Any a

will resu

9. No ex

30 minu 10. Addi

answer

hall.

hall.

**Examiner's Signature**