REV-00 MSC/113/132 2017/12

M. Sc. CHEMISTRY FIRST SEMESTER INORGANIC CHEMISTRY MSC - 103

Duration: 3 Hrs.

Marks: 70

Marks: 50

Part : A (Objective) = 20 Part : B (Descriptive) = 50

[PART-B : Descriptive]

Duration: 2 Hrs. 40 Mins.

[Answer question no. One (1) & any four (4) from the rest]

1.	a. Calculate the bond order for NO+ ions on the basis of molecular orbital theory (MOT).	2+3+5 =10
	b. Calculate the formal charge for ozone (O ₃) and NO ₂ molecule.	
	 c. Discuss acidity of diboranes. Give the following reactions of diborane i. Diborane and ammonia treated at high temperature in 1:2 ratio ii. Hydrolysis of diborane in presence of conc. alkali solution iii. Combustion of diborane. 	
2.	a. Explain the Jahn – Teller Effect	5x2= 10
	b. The aqueous solution of $[N1(H_20)_6]^{2+}$ shows the following transitions at 8,500; 13,800 and 25, 300 cm ⁻¹ . Make assignment of the bands and calculate the value of Δo and B.	
3.	a. Explain the spin state cross over phenomena in certain complexes.	5x2=
	b. Explain the Selection rules for electronic spectra. Metal complexes shows d-d transition despite being Laporte forbidden. How?	10
4.	a. Explain the bonding in ML_6 octahedral complex (with only sigma bonding ligands) by MO theory.	7+3= 10
	b. How does quenching of orbital magnetic moment take place in	

complexes?

5.	a. Write a short note on phosphazene. Discuss the structure of hexachlorocyclotriphosphazene.	3+2=5
	b. Define electronegativity. How electronegativity value can be determined using Pauling Scale?	5
6.	a. Define pseudohalides and give two dissimilarities between halogens and pseudohalogens.	3
	b. In the following molecules, give the hybridization and geometry of Xe atom: i. XeO_2F_2 ii. XeO_2F_4	2
	c. Discuss the structure of silicates.	5
7.	a. Describe citing one example how Walsh's diagram approach relates molecular shape to the occupation of molecular orbitals.	5+5=10
	b. Why nitrogen molecule is diamagnetic in nature but oxygen molecule is paramagnetic in nature. Explain on the basis of molecular orbital theory.	
8.	a. Write short notes on:	5x2=10
	i. Dissolved oxygen (DO)	
•	ii. Biological oxygen Demand(BOD)	
	b. Explain the mechanism of photochemical smog.	

==***==

M. SC. CHEMISTRY FIRST SEMESTER INORGANIC CHEMISTRY MSC - 103

[PART-A: Objective]

Choose the correct answer from the following :

1. The Microstate for d^2 configuration with $M_L = -4$ and $M_S = 0$ will be-

- a. (2+, 2-)
- **b.** (-2⁺, -2⁻)
- **c.** (2⁺, 2⁺)
- **d.** (-2⁻, -2⁻)
- 2. The Ground Term for d ⁵ configuration will be
 - a. 5D
 - b. 1S
 - c. 4F
 - d. 65
- 3. The [Cr(H₂O)₆] ³⁺ complex shows the transition at 17,400; 24,600; and 37,800 cm⁻¹. The value of Δo is
 - a. 17,400 cm⁻¹
 - **b.** 24,600 cm⁻¹
 - **c.** 37,800 cm⁻¹
 - d. 17, 400 nm

4. The calculated spin only Magnetic Moment of Fe³⁺ will be

- a. 2.83
- **b.** 3.87
- **c.** 4.90
- **d.** 5.92
- 5. The origin of paramagnetism is
 - a. Field induced electron circulation.
 - b. Angular momentum of electron.
 - c. Spin-alignment from dipole-dipole interaction.
 - d. Spin pairing from dipole-dipole interaction.
- 6. The maximum degeneracy for t $_{2g}$ ² configuration is
 - **a.** 15
 - **b.** 25
 - **c.** 35
 - **d.** 45

 $1 \times 20 = 20$

- 7. The distortion (elongation) along only one C4 axis in octahedral is called
 - a. Rhombic distortion
 - b. Tetragonal distortion
 - c. Trigonal distortion
 - d. Pyramidal distortion
- 8. A complex which absorbed in the Red region of the spectrum appears
 - a. Red in colour
 - **b.** Yellow in colour
 - c. Orange in colour
 - d. Blue -Green in colour
- 9. In chain silicates the number of bridging O atoms are
 - **a.** 1
 - **b.** 2
 - **c.** 3
 - d. 4
 - и. т

10. All of the following are bases except

- a. NH₃
- b. N₃H
- c. N_2H_4
- d. NH₂OH
- **11.** In B₂H₆
 - a. The B-H bonds are ionic
 - **b.** There is a direct B-B bond
 - c. It is isostructural with C₂H₆
 - d. Boron atoms are linked through H bridges
- 12. The oxoacid of phosphorus having P atoms in +4, +3 and +4 oxidation states
 - a. H₅P₃O₁₀
 - b. H5P3O7
 - c. H₅P₃O₈
 - d. H₅P₃O₉
- 13. The correct sequence in which bond order decreases in $O_2, O_2^+, O_2^-, O_2^{-2-}$
 - **a.** O₂>O₂+>O₂->O₂²⁻
 - **b.** $O_2 > O_2^+ > O_2^2 > O_2^-$
 - c. $O_2^+ > O_2^- > O_2^2^-$
 - **d.** $O_2 > O_2 > O_2^+ > O_2^2^-$

- 14. In which one of the following pairs molecules/ions have similar shape?
 - a. CO₂ and H₂O
 - **b.** BF₃ and t-butyl carbonium ion
 - c. CCl₄ and PtCl₄
 - d. NH₃ and BF₃
- 15. In which compound are the bond most polar?
 - a. H₂O
 - **b.** CO₂
 - c. CCl₄
 - d. CIF
- **16.** Where is an electron added during the change of NO+ to NO?
 - a. o-orbital
 - b. Л-orbital
 - c. σ^* -orbital
 - **d.** Л*-orbital
- **17.** The shape of BrF₃ is
 - a. T-Shaped
 - b. Trigonal planar
 - c. Trigonal pyramidal
 - d. Trigonal bipyramidal
- 18. The number of electron in the σ_{2p} molecular orbital in N₂⁺
 - **a.** 0
 - **b.** 1
 - **c.** 2
 - **d.** 3

19. Ozone layer of stratosphere requires protection from indiscriminate use of

- a. Pesticides
- b. Balloons
- c. Atomic explosions
- d. Aerosols and high flying jets
- 20. Photochemical smog is formed in
 - a. Summer during morning time
 - b. Summer during day time
 - c. Winter during morning time
 - d. Winter during day time