M. Sc. CHEMISTRY
 FIRST SEMESTER
 InORGANIC CHEMISTRY
 MSC - 103

Duration: 3 Hrs.
Marks: 70
Part: A (Objective) $=\mathbf{2 0}$
Part : B (Descriptive) = 50
[PART-B: Descriptive]
Duration: 2 Hrs. 40 Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. a. Calculate the bond order for $\mathrm{NO}+$ ions on the basis of molecular $\begin{array}{r}2+3+5 \\ \text { orbital theory (MOT). }\end{array} \begin{aligned} & =10\end{aligned}$
b. Calculate the formal charge for ozone $\left(\mathrm{O}_{3}\right)$ and NO_{2} molecule.
c. Discuss acidity of diboranes. Give the following reactions of diborane
i. Diborane and ammonia treated at high temperature in $1: 2$ ratio
ii. Hydrolysis of diborane in presence of conc. alkali solution
iii. Combustion of diborane.

$$
\begin{aligned}
& \text { 2. a. Explain the Jahn -Teller Effect } \\
& \text { b. The aqueous solution of }\left[\mathrm{Ni}\left(\mathrm{H}_{2} 0\right)_{6}\right]^{2+} \text { shows the following transitions } \\
& \text { at } 8,500 ; 13,800 \text { and } 25,300 \mathrm{~cm}^{-1} \text {. Make assignment of the bands and } \\
& \text { calculate the value of } \Delta \mathrm{o} \text { and B. }
\end{aligned}
$$

3. a. Explain the spin state cross over phenomena in certain complexes. $5 \times 2=$
b. Explain the Selection rules for electronic spectra. Metal complexes shows d-d transition despite being Laporte forbidden. How?
4. a. Explain the bonding in ML_{6} octahedral complex (with only sigma $7+3=$ bonding ligands) by MO theory. 10
b. How does quenching of orbital magnetic moment take place in complexes?
5. a. Write a short note on phosphazene. Discuss the structure of hexachlorocyclotriphosphazene.
b. Define electronegativity. How electronegativity value can be determined using Pauling Scale?
6. a. Define pseudohalides and give two dissimilarities between halogens and pseudohalogens.
b. In the following molecules, give the hybridization and geometry of Xe atom:

$$
\text { i. } \mathrm{XeO}_{2} \mathrm{~F}_{2} \text { ii. } \mathrm{XeO}_{2} \mathrm{~F}_{4}
$$

c. Discuss the structure of silicates. 5
7. a. Describe citing one example how Walsh's diagram approach relates $5+5=10$ molecular shape to the occupation of molecular orbitals.
b. Why nitrogen molecule is diamagnetic in nature but oxygen molecule is paramagnetic in nature. Explain on the basis of molecular orbital theory.
8. a. Write short notes on:
i. Dissolved oxygen (DO)
ii. Biological oxygen Demand(BOD)
b. Explain the mechanism of photochemical smog.

M. Sc. CHEMISTRY
 FIRST SEMESTER
 INORGANIC CHEMISTRY
 MSC - 103
 [PART-A: Objective]

Choose the correct answer from the following:

1. The Microstate for d^{2} configuration with $\mathrm{M}_{\mathrm{L}}=-4$ and $\mathrm{M}_{\mathrm{S}}=0$ will be-
a. $\left(2^{+}, 2^{-}\right)$
b. $\left(-2^{+},-2^{-}\right)$
c. $\left(2^{+}, 2^{+}\right)$
d. $\left(-2^{-},-2^{-}\right)$
2. The Ground Term for d^{5} configuration will be-
a. ${ }^{5} \mathrm{D}$
b. ${ }^{1} \mathrm{~S}$
c. ${ }^{4} \mathrm{~F}$
d. ${ }^{6} \mathrm{~S}$
3. The $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex shows the transition at 17,$400 ; 24,600$; and $37,800 \mathrm{~cm}^{-1}$. The value of $\Delta \mathrm{o}$ is-
a. $17,400 \mathrm{~cm}^{-1}$
b. $24,600 \mathrm{~cm}^{-1}$
c. $37,800 \mathrm{~cm}^{-1}$
d. $17,400 \mathrm{~nm}$
4. The calculated spin only Magnetic Moment of Fe^{3+} will be
a. 2.83
b. 3.87
c. 4.90
d. 5.92
5. The origin of paramagnetism is
a. Field induced electron circulation.
b. Angular momentum of electron.
c. Spin-alignment from dipole-dipole interaction.
d. Spin pairing from dipole-dipole interaction.
6. The maximum degeneracy for $\mathrm{t}_{2 \mathrm{~g}}{ }^{2}$ configuration is -
a. 15
b. 25
c. 35
d. 45
7. The distortion (elongation) along only one C_{4} axis in octahedral is called -
a. Rhombic distortion
b. Tetragonal distortion
c. Trigonal distortion
d. Pyramidal distortion
8. A complex which absorbed in the Red region of the spectrum appears
a. Red in colour
b. Yellow in colour
c. Orange in colour
d. Blue -Green in colour
9. In chain silicates the number of bridging O atoms are-
a. 1
b. 2
c. 3
d. 4
10. All of the following are bases except
a. NH_{3}
b. $\mathrm{N}_{3} \mathrm{H}$
c. $\mathrm{N}_{2} \mathrm{H}_{4}$
d. $\mathrm{NH}_{2} \mathrm{OH}$
11. In $\mathrm{B}_{2} \mathrm{H}_{6}$
a. The B-H bonds are ionic
b. There is a direct $\mathrm{B}-\mathrm{B}$ bond
c. It is isostructural with $\mathrm{C}_{2} \mathrm{H}_{6}$
d. Boron atoms are linked through H bridges
12. The oxoacid of phosphorus having P atoms in $+4,+3$ and +4 oxidation states a. $\mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$
b. $\mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{7}$
c. $\mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{8}$
d. $\mathrm{H}_{5} \mathrm{P}_{3} \mathrm{O}_{9}$
13. The correct sequence in which bond order decreases in $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{-}, \mathrm{O}_{2}{ }^{2-}$
a. $\mathrm{O}_{2}>\mathrm{O}_{2}+>\mathrm{O}_{2}>\mathrm{O}_{2}{ }^{2-}$
b. $\mathrm{O}_{2}>\mathrm{O}_{2}{ }^{+}>\mathrm{O}_{2}{ }^{2-}>\mathrm{O}_{2}^{-}$
c. $\mathrm{O}_{2}{ }^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}->\mathrm{O}_{2}{ }^{2-}$
d. $\mathrm{O}_{2}>\mathrm{O}_{2}->\mathrm{O}_{2}{ }^{+}>\mathrm{O}_{2}{ }^{2-}$
14. In which one of the following pairs molecules/ions have similar shape?
a. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
b. BF_{3} and t -butyl carbonium ion
c. CCl_{4} and PtCl_{4}
d. NH_{3} and BF_{3}
15. In which compound are the bond most polar?
a. $\mathrm{H}_{2} \mathrm{O}$
b. CO_{2}
c. CCl_{4}
d. ClF
16. Where is an electron added during the change of $\mathrm{NO}+$ to NO ?
a. o-orbital
b. Л-orbital
c. σ^{*}-orbital
d. Π^{*}-orbital
17. The shape of BrF_{3} is
a. T-Shaped
b. Trigonal planar
c. Trigonal pyramidal
d. Trigonal bipyramidal
18. The number of electron in the $\sigma_{2 p}$ molecular orbital in $\mathrm{N}_{2}{ }^{+}$
a. 0
b. 1
c. 2
d. 3
19. Ozone layer of stratosphere requires protection from indiscriminate use of
a. Pesticides
b. Balloons
c. Atomic explosions
d. Aerosols and high flying jets
20. Photochemical smog is formed in
a. Summer during morning time
b. Summer during day time
c. Winter during morning time
d. Winter during day time
