M. Sc. CHEMISTRY
 FIRST SEMESTER
 INOGRANIC CHEMISTRY
 MSC-103

Duration: 3 Hrs.
Marks: 70
Part: A (Objective) $=20$
Part : B (Descriptive) $=50$
[PART-B: Descriptive]
Duration: 2 Hrs. 40 Mins.
Marks: 50

[Answer question no. One (1) \& any four (4) from the rest]

1. i. Write the MO electron configuration for NO^{-}ion. Will the bond length be shorter than in NO?
ii. The bond angles $\mathrm{H}-\mathrm{C}-\mathrm{H}$ and $\mathrm{F}-\mathrm{C}-\mathrm{F}$ in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ are 112 and 108.5°. Calculate the ' s ' character used by the carbon atom in the orbitals directed to hydrogen and fluorine atoms and discuss the results in terms of Bent's rule.
iii. Use VSEPR model to predict the probable structures of the following: $\mathrm{I}_{5}{ }^{-}, \mathrm{XeO}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{XeF}_{6}$ and IF_{7}.
2. i. Why are the compounds of Ti^{4+} and Zn^{2+} typically white? Why are the $2+3+5$
Mn^{2+} compounds very pale in colour?
ii. Draw the σ-bond molecular orbital diagram for a complex of octahedral symmetry.
iii. Justify which of the following complexes are expected to show JahnTeller distortion
a. $\mathrm{K}_{4}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
b. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
c. $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
d. $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
3. i. Why does CO_{2} molecule exist as discrete molecule whereas SiO_{2} as $2+3+5$ three dimensional structures?
ii. Identify compounds A, B and C

iii. Write a preparation method of diborane. Describe the structure and bonding of $\mathrm{B}_{2} \mathrm{H}_{6}$. Complete the reaction of $\mathrm{B}_{2} \mathrm{H}_{6}$ with $\mathrm{H}_{2} \mathrm{O}$ and Cl_{2} (at 25 ${ }^{\circ} \mathrm{C}$).
4. i. Write a preparation method of diborane. Describe the structure and bonding of $\mathrm{B}_{2} \mathrm{H}_{6}$. Complete the reaction of $\mathrm{B}_{2} \mathrm{H}_{6}$ with $\mathrm{H}_{2} \mathrm{O}$ and Cl_{2} (at 25 ${ }^{\circ} \mathrm{C}$)
ii. Solutions of $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3-}$ iens are pale blue-green but the chromate ion, $\mathrm{CrO}_{4}{ }^{2}$, is an intense yellow. Justify the origins of the transitions.
iii. When visible light passes through a solution of nickel(II) sulfate, a green solution results. What are the spin-allowed transitions responsible for this color? Would you expect a Jahn-Teller distortion for this complex?
5. i. Chromium(II) fluoride and manganese(II) fluoride both have a central metal ion surrounded by six fluerde ligands. The Mn-F bend lengths are equidistant, but four of the $\mathrm{Cr}-\mathrm{F}$ distances are long and two are short. Justify the observation
ii. Calculate the number of microstates for d^{2} configuration. Deduce the ground state term symbol for same configuration.
iii. Draw the structures of $\mathrm{Si}_{2} \mathrm{O}_{7}{ }^{-{ }^{-}}$and $\mathrm{Si}_{6} \mathrm{O}_{18^{12-}}$
6. i. What are the major advantages of Faraday method over Gouy method for experimental determination of magnetic susceptibility?
iii. The complexes $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{3+},\left[\mathrm{MnCl}_{4}\right]^{-}$and $\left[\mathrm{FeCl}_{4}\right]^{-}$all have magnetic moments of nearly 5.92 BM . Comment on the geometric and electronic structures of the complexes. Why is the spin-only formula so precise in these cases?
7. i. What are biodegradable and non-biodegradable pollutants? What are $5+5=10$ the sources of dissolved oxygen in water?
ii. What is photochemical smog? From where does ozone come in the photochemical smog?
8. Write a brief note on the catalytic regulation and utilization of green house gases.

II, Briefly write on-

a. Spin-orbit coupling b. quenching or orbital angular momenta.
b. quenching or orbital angular momenta.

M. Sc. CHEMISTRY
 FIRST SEMESTER
 INOGRANIC CHEMISTRY

MSC - 103

[PART-A: Objective]

Choose the correct answer from the following

1. The number of valence electron pairs in BrF_{3} is -
a. 1
b. 2
c. 4
d. 3
2. Among the molecular ions the $d \pi-p \pi$ bond is possible in -
a. $\mathrm{NO}_{3}{ }^{-}$
b. NO_{2}^{-}
c. PO_{4}^{3-}
d. $\mathrm{CO}_{3}{ }^{2-}$
3. The optical absorption spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ has its absorption maximum at 20300 cm^{-1}. The magnitude of CFSE in cm^{-1} is-
a. 16240
b. 8120
c. 24360
d. 50750
4. The Pi bonding type in coordination compounds with CO as ligand is-
a. $\mathrm{p}_{\pi}-\mathrm{d}_{\pi}$
b. $\mathrm{d}_{\pi}-\sigma^{*}$
c. $\mathrm{d}_{\pi}-\mathrm{d}_{\pi}$
d. $\mathrm{d}_{\pi}-\pi^{*}$
5. For which of the following ground state terms, Jahn-Teller distortion is not observed in ML_{6} complexes?
a. ${ }^{3} \mathrm{~A}_{2 g}$
b. ${ }^{3} \mathrm{~T}_{1 g}$
c. ${ }^{2} \mathrm{E}_{\mathrm{g}}$
d. ${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$
6. For transition metal series, Δ_{0} values follow the order
a. $3 \mathrm{~d}>4 \mathrm{~d}<5 \mathrm{~d}$
b. $3 \mathrm{~d}<4 \mathrm{~d}>5 \mathrm{~d}$
c. $3 \mathrm{~d}<4 \mathrm{~d}<5 \mathrm{~d}$
d. $3 d>4 d>5 d$
7. The CFSE of d^{4} configuration in high spin cases will be
a. $-1.6 \Delta_{0}$
b. Δ_{0}
c. $-0.4 \Delta_{0}$
d. $-0.6 \Delta_{0}$
8. The spin-only $\left(\mu_{\mathrm{S}}\right)$ and spin plus orbital $\left(\mu_{\mathrm{S}+\mathrm{L}}\right)$ magnetic moments of $\left[\mathrm{CrCl}_{6}\right]^{3^{-}}$are
a. 3.87 BM and 6.34 BM
b. 2.84 BM and 5.20 BM
c. 3.87 BM and 5.20 BM
d. 2.84 BM and 6.34 BM
9. The ground state term symbol and calculated magnetic moment of Ce^{3+} in $\mathrm{Ce}_{2} \mathrm{Mg}_{3}(\mathrm{NO})_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ are -
a. ${ }^{2} \mathrm{~F}_{5 / 2}$ and 1.73 BM
b. ${ }^{2} \mathrm{~F}_{5 / 2}$ and 2.54 BM
c. ${ }^{2} \mathrm{~F}_{7 / 2}$ and 2.54 BM
d. ${ }^{2} \mathrm{~F}_{7 / 2}$ and 1.60 BM
10. The correct d-electron configuration showing spin-orbit coupling is
a. $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{eg}^{2}$
b. $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{0}$
c. $\mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{e}_{\mathrm{g}}{ }^{0}$
d. $\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{2}$
11. The d-d transitions in an octahedral $\left[\mathrm{NiX}_{6}\right]^{2+}$ complex are-
a. Laporte forbidden but spin allowed
b. Both laporte and spin forbidden
c. Both laporte and spin allowed
d. Laporte allowed but spin forbidden
12. $\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}^{-}$contains $\ldots . . \mathrm{BO}_{4}$ unit(s)
a. 2
b. 1
c. 3
d. 4
13. C_{60} possess the geometry of
a. Truncated octahedron
b. Trigonalbipyramidal
c. Tetrahedron
d. Truncated icosahedron
14. How many BH_{2} units are there in $\mathrm{B}_{4} \mathrm{H}_{10}$?
a. 1
b. 2
c. 3
d. 0
15. XeF_{6} on reaction with CsF gives-
a. $\left[\mathrm{XeF}_{5}\right]^{+}\left[\mathrm{CsF}_{2}\right]^{-}$
b. XeF_{8}
c. $\mathrm{Cs}^{+}\left[\mathrm{XeF}_{7}\right]$
d. $\left[\mathrm{XeF}_{4}\right]^{2+}\left[\mathrm{CsF}_{3}\right]^{2-}$
16. The correct set of pseudohalide anions is
a. $\mathrm{CN}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}, \mathrm{PF}_{6}^{-}$
b. $\mathrm{N}_{3}{ }^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{HSO}_{4}{ }^{-}, \mathrm{AsF}_{6}{ }^{-}$
c. $\mathrm{SCN}^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{N}_{3}^{-}$
d. $\mathrm{CN}^{-}, \mathrm{N}_{3}{ }^{-}, \mathrm{SCN}^{-}, \mathrm{NCN}^{-}$
17. The geometries of $\left[\mathrm{Br}_{3}\right]^{+}$and $\left[\mathrm{I}_{5}\right]^{+}$, respectively, are
a. tetrahedral and trigonalbipyramidal
b. trigonal and tetrahderal
c. tetrahedral and tetrahedral
d. linear and trigonal pyramidal
18. Biochemical Oxygen Demand, (BOD) is a measure of organic material present in water. BOD value less than 5 ppm indicates a water sample to be \qquad a. highly polluted
b. poor in dissolved oxygen
c. rich in dissolved oxygen
d. not suitable for aquatic life
19. Density of water becomes maximum at
a. $10^{\circ} \mathrm{C}$
b. $4^{\circ} \mathrm{C}$
c. $5^{\circ} \mathrm{C}$
d. $12^{\circ} \mathrm{C}$
20. Depletion of ozone is more during the month-
a. September-November
b. January-March
c. July-August
d. April-June

UNIVERSITY OF SCIENCE \& TECHNOLOGY, MEGHALAYA
[PART (A) : OBJECTIVE]
Duration : 20 Minutes
Serial no. of the main Answer sheet

Course : \qquad

Semester : \qquad Roll No : \qquad

Enrollment No : \qquad Course code :

Course Title

\qquad

Session:
2017-18
Date : \qquad
\qquad

Instructions / Guidelines
$>$ The paper contains twenty $(20) /$ ten (10) questions.
$>$ Students shall tick (\checkmark) the correct answer.
$>$ No marks shall be given for overwrite / erasing.
$>$ Students have to submit the Objective Part (Part-A) to the invigilator just after completion of the allotted time from the starting of examination.

